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How Programs Should Work
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What Normally Happens
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Verification = Trust
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Cogent
● Restricted, pure, polymorphic, functional language with linear types and 

no runtime environment nor garbage collector
● Has a certifying compiler

– Isabelle/HOL shallow embedding
– C code
– Refinement proof

● No native support for recursion
● Use FFI to call C functions that implement ADTs and iterators

– The C functions need to be verified manually

5



  

The Big Picture
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Expected Outcomes I
● Define a functional correctness specification for 

32-bit word arrays
● Verify functional correctness of the 32-bit word 

array implementation
● Verify that the 32-bit word array implementation 

satisfies Cogent’s frame constraints
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Expected Outcomes II
● Formulate a generic specification for word arrays
● Formulate generic proof techniques and 

requirements to prove functional correctness of word 
arrays

● Formulate generic proof techniques and 
requirements to prove frame constraint satisfiability 
of word arrays
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What Has Been Achieved?
● Defined a functional correctness specification for 32-

bit word arrays
● Verified functional correctness for the get, length, put 

and fold 
● Verified frame correctness for get, length, put and fold
● 32-bit word array proofs also work with slight 

modifications for other standard word lengths
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Methodology
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Functional Correctness 
Specification

● 2 Choices:
1)Define an abstraction from word arrays to an 

abstract data type (Isabelle/HOL lists)

2)Define high level HOL properties for word arrays
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Why Option 1?

Function correctness specification

Shallow embedding
Functional

correctness specification

ADT C codeC code

Cogent
 compiler

Cogent
code

ADT
antiquoted

C code

12



  

Frame Constraints for C Pointers
● Inertia

–  

● Leak freedom
–  

● Fresh allocation
–  
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p∉w i∪wo⇒μi (p)=μo(p )

p∈wi∧p∉wo⇒μo( p)=⊥

p∉w i∧p∈wo⇒μi (p)=⊥

Pointer : p

Input writable pointer set :wi

Output writable pointer set :wo

Input heap function :μi

Output heap function :μo



  

Generate the C files



  

Results
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Bug Discovery
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Points of Interest
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Pointer Arithmetic
● Accessing the ith element in an array

–  

● Issues
–                                       ?
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a≠b⇒ p+k×a≠p+k×b

p+k×i



  

Word Arithmetic
●                                                                 ?
● Only if k is coprime with n

–  
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k×a≡k×b mod n ⇒ a≡b mod n

2×2≡2×6 mod 8



  

What’s the Issue
● 32-bit words are 4 bytes in size
● Word arithmetic in a 32-bit architecture modulo 232 
● Overflow can allow 2 distinct indices to have the 

same addresses in memory
● Assume that 4 times the length of a 32-bit word 

array is less than 232 
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Frame Constraints
● Different memory models

– Cogent has a single heap
– Autocorres abstracts the heap as different typed heaps

● Which pointers are writeable?
● Should a Cogent pointer equate to single C pointer 

or to a set of C pointers?
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Conclusions and Future Work

22



  

Specification
● Functional correctness specification for 32-bit 

word arrays can be reused for arbitrary word 
length arrays (with a few tweaks)
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Proof Techniques
● Most of the proofs can be reused for arbitrary 

word length arrays (with a few tweaks)
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Frame Constraint Satisfiability
● Develop a tactic to automatically extract the 

writeable pointer sets and to define the frame 
constraints for each type 
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