

Verifying C Data-types for Cogent

Louis Francis Cheung (z5062193)
1

How Programs Should Work

2

What Normally Happens

3

Verification = Trust

4

Cogent
● Restricted, pure, polymorphic, functional language with linear types and

no runtime environment nor garbage collector
● Has a certifying compiler

– Isabelle/HOL shallow embedding
– C code
– Refinement proof

● No native support for recursion
● Use FFI to call C functions that implement ADTs and iterators

– The C functions need to be verified manually

5

The Big Picture

Function correctness specification

Shallow embedding
Functional

correctness specification

ADT C codeC code

Cogent
 compiler

Cogent
code

ADT
antiquoted

C code

6

Expected Outcomes I
● Define a functional correctness specification for

32-bit word arrays
● Verify functional correctness of the 32-bit word

array implementation
● Verify that the 32-bit word array implementation

satisfies Cogent’s frame constraints

7

Expected Outcomes II
● Formulate a generic specification for word arrays
● Formulate generic proof techniques and

requirements to prove functional correctness of word
arrays

● Formulate generic proof techniques and
requirements to prove frame constraint satisfiability
of word arrays

8

What Has Been Achieved?
● Defined a functional correctness specification for 32-

bit word arrays
● Verified functional correctness for the get, length, put

and fold
● Verified frame correctness for get, length, put and fold
● 32-bit word array proofs also work with slight

modifications for other standard word lengths

9

Methodology

10

Functional Correctness
Specification

● 2 Choices:
1)Define an abstraction from word arrays to an

abstract data type (Isabelle/HOL lists)

2)Define high level HOL properties for word arrays

11

Why Option 1?

Function correctness specification

Shallow embedding
Functional

correctness specification

ADT C codeC code

Cogent
 compiler

Cogent
code

ADT
antiquoted

C code

12

Frame Constraints for C Pointers
● Inertia

–

● Leak freedom
–

● Fresh allocation
–

13

p∉w i∪wo⇒μi (p)=μo(p)

p∈wi∧p∉wo⇒μo(p)=⊥

p∉w i∧p∈wo⇒μi (p)=⊥

Pointer : p

Input writable pointer set :wi

Output writable pointer set :wo

Input heap function :μi

Output heap function :μo

Generate the C files

Results

15

Bug Discovery

16

Points of Interest

17

Pointer Arithmetic
● Accessing the ith element in an array

–

● Issues
– ?

18

a≠b⇒ p+k×a≠p+k×b

p+k×i

Word Arithmetic
● ?
● Only if k is coprime with n

–

19

k×a≡k×b mod n ⇒ a≡b mod n

2×2≡2×6 mod 8

What’s the Issue
● 32-bit words are 4 bytes in size
● Word arithmetic in a 32-bit architecture modulo 232
● Overflow can allow 2 distinct indices to have the

same addresses in memory
● Assume that 4 times the length of a 32-bit word

array is less than 232

20

Frame Constraints
● Different memory models

– Cogent has a single heap
– Autocorres abstracts the heap as different typed heaps

● Which pointers are writeable?
● Should a Cogent pointer equate to single C pointer

or to a set of C pointers?

21

Conclusions and Future Work

22

Specification
● Functional correctness specification for 32-bit

word arrays can be reused for arbitrary word
length arrays (with a few tweaks)

23

Proof Techniques
● Most of the proofs can be reused for arbitrary

word length arrays (with a few tweaks)

24

Frame Constraint Satisfiability
● Develop a tactic to automatically extract the

writeable pointer sets and to define the frame
constraints for each type

25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

