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Abstract

This thesis attempts to prove the soundness of Bilateral Proof by mechanising a repre-
sentative subset of Bilateral Proof in Isabelle/HOL.

Bilateral Proof is a verification framework written by Jayadev Misra for concurrent
programs with shared variables. This framework appears to be simpler than the ex-
isting frameworks that prove concurrent programs. Bilateral Proof also offers some
nice properties, namely compositional and the ability to prove both safety and progress
properties. However, no one had attempted to prove the soundness of this logic prior
to this work.

Results show that the rules formalised are sound under certain assumptions found
throughout the formalisation.
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Chapter 1

Introduction

The concept of concurrent programming has been around for at least 50 years. With

concurrency, multiple programs are able to run simultaneously. Concurrency also allows

an increase in CPU utilisation and enables us to write responsive systems.

Despite the benefits, writing concurrent programs is incredibly hard, let alone proving

their correctness. This is due to the fact that the executions of concurrent programs

are almost always non-deterministic. There is a very large, or even an exponential

number of possible executions a program can take. Therefore, testing methods such as

traditional software testing and exhaustively analysing all possible behaviours (model

checking) would not always work.

To overcome this, formal verification has been utilised as a means to prove the correct-

ness of concurrent programs. One of the first methods was introduced in 1976 by Susan

Owicki and David Gries, referred to as the Owicki-Gries method [OG76]. Owicki-Gries

extended Hoare logic [Hoa69], which proves the correctness of sequential programs,

to include parallelism. Various other frameworks had then been discovered, such as

the Rely/Guarantee method [Jon81] which is compositional, and UNITY [CM88] that

proves safety and progress properties for a limited set of program constructs.

As recently as 2017, a new verification method for concurrent programs was published

by Jayadev Misra, named Bilateral Proof [Mis17]. This compositional framework allows

verification of programs for a given specification with the ability to also prove safety

and progress properties. However, this logic had not been proved sound. Soundness of

a logic means that all statements which can be derived are true. That is, the logic had

been proposed, but it had not yet been proved that it actually works.

1
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This thesis aims to first mechanise a representative subset of Bilateral Proof in Is-

abelle/HOL [NPW02]. Afterwards, Isabelle is used to prove the soundness of the for-

malised rules.

Chapter 2 provides some background on concurrency. Chapter 3 reviews the existing

proof methods for concurrent programs. Chapter 4 outlines a summary of Bilateral

Proof. Chapter 5 gives a brief introduction to Isabelle/HOL in order to understand the

work in this thesis. Chapter 6 presents the formalisation and soundness proof of Bilat-

eral Proof in Isabelle/HOL. Chapter 7 evaluates the formalisation and the soundness

proof. Finally, Chapter 8 summarises the thesis and gives suggestions for any future

work beyond this thesis.

2
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Chapter 2

Concurrency

2.1 Background

In concurrent programs, several tasks are carried out simultaneously by having multiple

threads. Each of the threads has its own program counter that keeps track of which

instruction to execute next [Tan09, p. 99].

There are three different categories of concurrent applications: multithreaded, multi-

processor, and distributed.

A multithreaded application is executed in a single processor. It is decomposed into

multiple threads and executed in an interleaving manner. Here, each thread acts as if

it is being executed alone when in fact the processor is switching rapidly between the

threads.

A multiprocessor application utilises multiple processors to run multiple threads. Here,

we treat the concurrency of multithreaded and multiprocessor applications the same

way.

Finally, in a distributed setting, an application is split into several separate machines.

2.2 Scheduling and Fairness

Unlike sequential programs, concurrent programs may have multiple threads that are

ready to be executed at the same time [Tan09, p. 143-148]. For that reason, there is a

3
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need for a method to decide which thread to run at a subsequent time, i.e. scheduling.

The part of the operating system that performs this is called the scheduler.

One of the features a scheduling algorithm should have is fairness, i.e. to give a fair

share of a processor for each thread. A typical scheduling algorithm to ensure fairness

is Round-Robin scheduling [Tan09, p. 152], whereby each thread is assigned a time

interval during which it is allowed to run. At the end of each interval, the processor

executes the next thread, and so on.

The concept of fairness will be useful later when discussing progress properties.

2.3 Communication

In order for the threads to work with each other, they need to communicate and syn-

chronise with each other. This can be done with either shared variables or message

passing.

Shared variables are used for multithreaded and multiprocessor applications. They have

a common memory that each thread can read and write to. These operations allow

threads to interfere with each other, and hence unexpected behaviours might occur.

On the other hand, interference is not a concern in message passing. This is due to

the fact that the threads communicate by exchanging messages over a network. This

method is used by distributed applications.

This thesis concerns only concurrent programs with shared variables.

2.4 Safety and Liveness Properties

To prove the correctness of a concurrent program, Lamport [Lam77] introduced two

types of properties, safety and liveness.

A safety property asserts that something bad will not happen. A real-life example of

safety is “vehicles must stop when the traffic light is red”. An example of a safety

property in programming is partial correctness. A program is said to be partially

correct if, whenever the program begins in a state that satisfies the precondition, then

the postcondition holds if the program terminates.

4
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A liveness property states that something good must happen. A possible liveness

property for traffic lights is “a traffic light will eventually turn green”. In terms of

programs, an example is “a program will produce a result”. In other words, the program

must terminate.

There is also a restricted class of liveness called progress. A progress property asserts

that an action is eventually executed. Fairness of the scheduler is required to ensure

progress. If fairness is not enforced, a process might never be executed and thus it will

not be able to make any progress.

5
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Chapter 3

Existing Proof Methods for

Concurrent Programs

3.1 Owicki-Gries

3.1.1 Background

The following is a simple program where two threads execute an atomic action x := x+1

concurrently. An atomic action is either performed completely without any interference

from other threads or not performed at all.

{x = 0} {x = 0}
x := x+ 1 || x := x+ 1

{x = 1} {x = 1}

|| is a parallel composition and works by choosing a thread non-deterministically and

executing its current instruction.

In the program above, the statements express what the program must do and the

assertions enclosed in curly braces tell what must be true when the program is at that

point. These are the concepts from Hoare logic. The assertion above a statement is

called precondition and the assertion below a statement is called postcondition.

It is rather intuitive to take the conjunction of the pre and postconditions in order to

6
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prove the correctness of the whole program, as shown below.

{x = 0 ∧ x = 0}
x := x+ 1 || x := x+ 1

{x = 1 ∧ x = 1}

However, this is incorrect. We know that after the execution of the program, it will

terminate with x = 2. Simply taking the conjunction does not work because the

threads interfere with each other. A more sophisticated proof method is required, and

the Owicki-Gries method [OG76] was one of the very first to solve this problem and is

perhaps the best known. It was published in 1976 by Susan Owicki and David Gries,

with the idea of extending Hoare logic for parallel programs.

3.1.2 Proof Theory

There are two steps in proving the correctness of parallel programs using the Owicki-

Gries method. First, prove local correctness and then prove interference freedom.

Local correctness refers to the correctness of each thread as seen before with the Hoare

logic assertions. This can easily be proved using Hoare logic rules.

Interference freedom is required to prove global correctness, which is the correctness of

the whole program. With interference freedom, assertions must remain valid even upon

any execution of a statement in another thread. As a consequence, each statement in

the program needs to be annotated.

Here is an example of both forms of correctness of the program x := x+ 1 || x := x+ 2

with precondition x = 0.

{x = 0}
{P1 : x = 0 ∨ x = 2} {P2 : x = 0 ∨ x = 1}
S1 : x := x+ 1 || S2 : x := x+ 2

{Q1 : x = 1 ∨ x = 3} {Q2 : x = 2 ∨ x = 3}
{x = 3}

It can be observed that each statement has its own assertions and proving the local

correctness of each thread is trivial. There are however four more proof obligations for

interference freedom, which are

{P1 ∧ P2} S2 {P1}, {P2 ∧ P1} S1 {P2}, {Q1 ∧ P2} S2 {Q1}, {Q2 ∧ P1} S1 {Q2}

These proof obligations are immediate and therefore the global correctness of this pro-

gram is proved.

7
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3.1.3 Limitations

While it is a nice and simple method, Owicki-Gries has two limitations. First, since

each assertion needs to be checked with all statements from other threads, the number

of proof obligations for testing interference freedom is quadratic in the number of state-

ments across all threads. Second, this method is not compositional because it requires

us to know the implementation of the whole program. A proof method referred to as

Rely-Guarantee that overcomes these drawbacks will be discussed next.

3.2 Rely/Guarantee

3.2.1 Background

Jones [Jon81] proposed a compositional proof method referred to as Rely/Guarantee

in 1981. He introduced a new notion of rely and guarantee conditions alongside the

pre and postconditions from Hoare logic. Rely corresponds to the interference from the

environment that a component can tolerate. This so-called environment refers to other

threads/components that are running in parallel. Guarantee describes the interference

of the component that can affect the environment.

In contrast to Owicki-Gries, there is no need for intermediate assertions to prove global

correctness. Here, each component is required to have a single predicate consisting

of its pre, rely, guarantee, and postcondition. These predicates are enough to prove

the correctness of a program, and no internal representation of the program is needed.

Thus, they make a compositional proof method.

3.2.2 Proof Theory

The specification of Rely/Guarantee consists of a quadruple {P,R,G,Q} where P is

the precondition, R is the rely condition, G is the guarantee condition, and Q is the

postcondition. As discussed in [XdRH97], we say a component C satisfies such specifi-

cation C {P,R,G,Q}
if

1. C starts in a state that satisfies P , and

2. any environment transition satisfies R,

then

8
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3. any component transition satisfies G, and

4. if C terminates, the final state satisfies Q.

While a complete list of the proof rules will not be shown here, it is worth looking at

a rule for parallel composition and how it deals with interference, taken from [Vaf08].

c1 {P,R ∨G2, G1, Q1} c2 {P,R ∨G1, G2, Q2}
c1 || c2 {P,R,G1 ∨G2, Q1 ∧Q2}

Let ε denote the environment of c1 || c2. Because c1 can be interfered with by either

c2 or ε, c1 must be able to tolerate both interferences. Hence, the rely condition of c1

is R ∨G2. Similarly, the rely condition of c2 is R ∨G1.

Since every statement in c1 || c2 is either from c1 or c2, it satisfies G1∨G2. In addition,

the precondition P needs to hold for each component. It also follows that if both

components terminate, then the conjunction of their postconditions, Q1 ∧Q2, holds.

3.2.3 Limitations

Compared to Owicki-Gries, Rely/Guarantee proposes a better solution to prove the

correctness of a program with respect to the specifications. The compositionality of

Rely/Guarantee allows a separation between the implementation of a component and

the proof of correctness. Additionally, safety properties proposed by Lamport [Lam77]

can easily be proved by utilising the guarantee conditions to include safety properties.

However, this method does not provide a way to prove liveness properties. A proof

method called UNITY overcomes this issue.

3.3 UNITY

Because UNITY is the method most closely related to Bilateral Proof, we will look at

it in some detail.

3.3.1 Background

Chandy and Misra [CM88, Mis95] introduced a framework called UNITY in 1988 which

is able to prove safety and progress properties. In sequential programs, assertions are

associated with specific program points. This is not the case with UNITY as it does

9
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not have program counters. Instead, safety and progress properties are associated with

the entire program.

Unlike the other proof methods, UNITY does not support control flow. There is no

sequential composition, if/else statements, nor loops. It only supports assignment

statements to a list of variables and they can be guarded. We call these assignment

statements actions. An example of a valid action is x, y := 0, 1 if z > 0.

In UNITY, a program consists of a number of threads running in parallel where each

thread consists of a single action. During each execution step of the program, an action

is selected non-deterministically and gets executed. This execution is also constrained

by the fairness rule, in which each thread is selected infinitely often.

3.3.2 Safety Properties

Misra [Mis95] introduced an operator called co (stands for constraint) to express safety

properties. p co q means that for any action, if p holds, then q holds after the execution

of the action.

Formally, p co q ≡ ∀t. {p} t {q}, where t is any action in the program and {p} t {q} is

a Hoare triple. Recall that the actions in UNITY are assignment statements to a list

of variables that can be guarded.

Suppose we want to express a safety property “x never decreases”. In other words, if

x has a certain value m, it continues to hold until the value exceeds m. Using the co

operator, we can write this as ∀m. x = m co x ≥ m.

3.3.3 Progress Properties

The primary operator for progress is called leads-to. In order to define leads-to, two

simpler predicates, transient and ensures, were introduced.

A predicate is transient if it is guaranteed to be falsified by an execution of some single

action in the program. Formally, p transient ≡ ∃s. {p} s {¬p}, where s is an action

in the program.

With ensures or en, p en q means that if p holds at any point, then it continues to

hold until q holds, and q holds eventually. Formally, p en q ≡ ((p ∧ ¬q) co (p ∨ q)) ∧
((p ∧ ¬q) transient).

10
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Finally, p leads-to q or p 7→ q means that if p holds at any point, then q holds eventually.

Unlike ensures, it does not require p to hold until q holds.

3.3.4 Limitations

UNITY’s approach to concurrent programs made it easier to prove correctness in terms

of safety and progress. As programs are decomposed into single actions, proofs concern

only the initial state, a single action, and its final state. However, the absence of control

flow and program counter makes it very difficult to write a conventional sequential

program. Explicit program counters are needed in order to do so.

11
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Chapter 4

Bilateral Proof

This chapter summarises a proof method called Bilateral Proof which takes the best

out of the existing proof methods presented so far.

4.1 Background

Bilateral Proof [Mis17] was published by Misra in 2017. It is a framework to prove

concurrent programs with shared variables. The main features are its compositionality

and the ability to verify program code. This method is largely inspired by UNITY and

uses concepts from UNITY as we will see later.

This framework proves two types of properties, referred to as terminal and perpetual

properties. A terminal property describes the postcondition for a given precondition.

Perpetual properties are those that hold throughout an execution, which are safety and

progress properties.

Finally, the proof itself is called bilateral because some of the rules employ terminal

properties to derive perpetual properties and vice versa.

12
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4.2 Program and Execution Model

4.2.1 Structure

The syntax of the programs according to Misra [Mis17] is described below.

action ::= guard→ body

f, g :: component ::= action | f [] g | seq(f0, f1, ..., fn)

program ::= f

A component can either be an action, a join of the form f [] g, or seq. An action

consists of a guard predicate and a body. Join denotes parallel composition || we have

seen before. We use the word “parallel composition” when talking about “join” in this

document as they convey the same meaning. Seq, on the other hand, corresponds to

any sequential language construct for which proof rules are available. Examples of seq

include sequential composition (;), if/else statements and while loops.

A program is a component that is meant to be executed alone. That is, without any

interference from other programs executing in parallel.

There is also a notion of local variables. A variable is local to a component if the

component has exclusive write-access to that variable at any point of its executions. A

local predicate of a component is a predicate in which all variables are local variables

of that component.

4.2.2 Execution

In the execution of an action b→ α, b is evaluated and if it is true, α is executed. An

execution where the guard b holds is called an effective execution. In contrast, the guard

does not hold in an ineffective execution and hence the program state is unaltered.

When a program is executed, initially the program counter is at the entry point of

the program. In any given state, the scheduler chooses which thread to run next,

and executes the action effectively or ineffectively. The execution follows the fairness

constraint, in which every thread is chosen eventually, so that no component is ignored

forever.

13
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4.2.3 Example: Distributed Counter

The following is a program from [Mis17] that implements a distributed counter ctr.

initially ctr = 0

fj ::

initially oldj , newj = 0, 0

loop

newj := oldj + 1;

if [ ctr = oldj → ctr := newj

| ctr 6= oldj → oldj := ctr ]

forever

This program is a parallel composition of a finite number of threads fj . It is particu-

larly interesting as this way of implementing a counter is usually done in distributed

computing. A common implementation in shared variables concurrency uses an atomic

statement ctr := ctr + 1. In this case, unlike the program above, the correctness proof

is straightforward since the atomicity gets rid of the interference problem.

As the program never terminates, we are not concerned about terminal properties

in this example. However, we want to prove some perpetual properties. First, we

want to show that ctr never decreases and it increases only by 1 at a time. This is a

safety property. We also want to prove a progress property showing that ctr increases

eventually.

4.3 Proof Theory

4.3.1 Program Specification

In the Bilateral Proof method, the specification of component f is of the form of the

quadruple {r} f {Q | s}. r is the precondition, Q is the set of perpetual properties,

and s is the postcondition.

For any execution of f starting in an r-state,

1. if the execution terminates, the end state is an s-state, and

2. every property in Q holds throughout the entire execution.

In terms of terminology, we write {r} f {s} when Q is irrelevant in the discussion.
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4.3.2 Local Annotation

A very important concept in Bilateral Proof is local annotations. Local annotations of

a component associate predicates local to each point of the component.

Local annotations are very similar to the annotations in Owicki-Gries with the exception

of being local. Similar to Owicki-Gries, each annotation acts as a precondition for the

execution of each action in the component. Moreover, the annotations also yield a valid

pre and postcondition for the component.

The main advantage of having local annotations is that the locality ensures there is no

interference on the annotations. Therefore, unlike Owicki-Gries which requires us to

prove both local correctness and interference freedom, it is enough to prove only the

former in the Bilateral Proof method.

Proof Rules

There is a separate rule to construct local annotations for action, seq, and parallel

composition.

The rules for seq are similar to the rules in Hoare Logic [Hoa69]. For example, here is

the proof rule for sequential composition.

{p} f {mid} {mid} g {q}
{p} f ; g {q} (semi)

Unlike in Hoare Logic, the rule here requires the assertions, i.e. p, mid, and q, and the

annotations of each component, f and g, to be local.

The remaining rules for action and parallel composition are presented below.

{p ∧ b} α {q}
{p} b → α {q} (action)

{r} f {s} {r′} g {s′}
{r ∧ r′} f [] g {s ∧ s′}

(parallel)

Similarly, all the assertions and annotations in these rules must be local. The parallel

rule suggests the compositionality of parallel composition. In this rule, we first derive

the specification for f and g separately. We can then take a parallel composition of the

two components without the need to know the implementation of f nor g.

15
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4.3.3 Example: Distributed Counter

Below is the distributed counter example with its local annotation, taken from [Mis17].

fj ::

initially oldj , newj = 0, 0

{true}
loop

{true}
αj :: newj := oldj + 1;

{newj = oldj + 1}
if [ βj :: {newj = oldj + 1} ctr = oldj → ctr := newj {true}
| γj :: {newj = oldj + 1} ctr 6= oldj → oldj := ctr {true}
]

{true}
forever

Observe that all variables in each assertion are local to fj . That is, the mentioned

variables, oldj and newj , are both local to fj . Moreover, there is no mention of ctr,

which is not a local variable.

4.3.4 Meta-Rules

The following rules, called meta-rules, are general rules about program specifications.

{r} f {Q | s} r′ ⇒ r, s⇒ s′, Q′ ⊆ Q, r′ and s′ are local to f

{r′} f {Q′ | s′}
(strengthen/weaken)

{r} f {Q | s} {r′} f {Q′ | s′}
{r ∧ r′} f {Q ∪ Q′ | s ∧ s′}

(conjunction)

{r} f {Q | s} {r′} f {Q′ | s′}
{r ∨ r′} f {Q ∩ Q′ | s ∨ s′}

(disjunction)

4.4 Safety Properties

Similar to UNITY, safety properties in the Bilateral Proof method are expressed using

the co operator.

16
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4.4.1 co

p co q in component f , where p and q do not need to be local to f , means that an

effective execution of any action of f in a p-state establishes a q-state. Once p holds,

it continues to hold until q is established. Additionally, co is compositional, i.e. p co q

holds in f iff it holds in every subcomponent of f .

The following rule defines co for an annotated component f .

{r} f {s} ∀ b→ α of f. {pre ∧ b ∧ p} α {q}
{r} f {p co q | s} (co)

where pre is the annotation of the action b→ α.

4.4.2 Special Cases of co

There are three special cases of co, namely stable, constant, and invariant. They

are defined as follows.

stable p ≡ p co p

constant e ≡ ∀c. stable (c = e)

invariant i ≡ initially i and stable i

stable p states that once p holds, it will always continue to hold. constant e means

that the value of e never changes. Finally, invariant i holds if i is always true. initially

i in a component means the precondition of the component implies i.

4.4.3 Inheritance Rule

The inheritance meta-rule, or simply the inheritance rule, presented below defines the

compositionality of safety properties.

∀i. {ri} fi {si}
{r} f {s} ∀i. {ri} fi {σ | si}

{r} f {σ | s} (inheritance)

If any safety property σ holds in all subcomponents fi of f , then σ also holds in f .

This holds in seq as well as parallel composition.

17
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4.4.4 Invariance Rule

Recall that the parallel composition rule in Section 4.3.2 only allows annotations that

are local. Therefore, each annotation is only allowed to mention variables that are local

to f or g but not both. The invariance rule is used to overcome this problem.

The invariance rule states that,

1. A local invariant of a component, i.e. a local predicate that is invariant in the

component, can be substituted for true, and vice versa, in any predicate in an

annotation or property of the component.

2. Any invariant can be conjoined to an assertion including the postcondition.

The first statement suggests that we are allowed to add or remove a local invariant into

any annotation or perpetual property. Here is a rule to add an invariant, which does

not need to be a local invariant, into safety property co.

{r} f {p co q, invariant i | s}
{r} f {(p ∧ i) co (q ∧ i)| s} (co invariance)

Recall that from Section 4.4.1, for any p co q in a component f , p and q do not need

to be local to f . Therefore, the invariant, i, does not need to be local to f in this rule.

The second statement can be interpreted as follows.

{r} f {invariant i | s}
{r} f {invariant i | s ∧ i} (post invariance)

4.4.5 Example: Distributed Counter

We would like to prove the safety property

σ :: ∀m ∈ Z. ctr = m co (ctr = m ∨ ctr = m+ 1)

in the distributed counter example shown in Section 4.3.3.

The proof would be as follows.

1. Using the inheritance rule, it is sufficient to prove σ in every component fj .

2. Using the co rule from Section 4.4.1, we must prove the assertion {pre∧b∧p} α {q}
for αj , βj and γj . Here is the proof obligation for each action.
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• αj : {true ∧ true ∧ ctr = m} newj := oldj + 1 {ctr = m ∨ ctr = m+ 1}

• βj : {newj = oldj+1∧ctr = oldj∧ctr = m} ctr := newj {ctr = m∨ctr = m+1}

• γj : {newj = oldj +1∧ctr 6= oldj∧ctr = m} oldj := ctr {ctr = m∨ctr = m+1}

3. All the proof obligations above are immediate. Hence, we have proved the dis-

tributed counter program satisfies the safety property σ.

4.5 Progress Properties

Progress properties in the Bilateral Proof method use the same operators as UNITY.

Unlike ensures and leads-to which have the same definition in UNITY, transient has a

slightly different definition.

4.5.1 Transient

Recall that in UNITY, a predicate is transient if it is falsified by an execution of some

single action. In Bilateral Proof, transient p means that if p holds at any point, ¬p
holds eventually. The following rule called basis rule defines transient for an annotated

component f .

{r} f {s} ∀ b→ α of f. (pre ∧ p⇒ b) ∧ {pre ∧ p} α {¬p}
{r} f {transient (p ∧ ¬postf ) | s} (basis)

where pre is the annotation of the action b→ α.

The rule guarantees that the guard of each action of f is enabled whenever p holds,

and the execution establishes ¬p. postf is a local predicate of f that is initially false

and becomes true only on the termination of f . If f never terminates, then postf is

false.

Other Transient Rules

Besides the basis rule, there are also three other rules for transient, namely sequencing,

concurrency, and inheritance.
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{r} f {transient (p ∧ ¬postf ) | postf} {postf} g {transient p | s}
{r} f ; g {transient p | s} (sequencing)

{r} f {transient p | s}
{r} f [] g {transient p | s} (concurrency)

∀i. {ri} fi {si}
{r} f {s} ∀i. {ri} fi {transient p | si}

{r} f {transient p | s} (inheritance)

The sequencing rule establishes transient in sequential composition. Consider the case

where f always terminates, in which postf will eventually hold. If p holds at the

termination of f , then g will eventually establish ¬p as transient p holds in g. Thus,

transient p holds in f ; g. On the other hand, if f does not always terminate, we

require transient p to hold in both f and g.

The concurrency rule establishes transient in parallel composition. It is enough that

the transient property only holds in one thread as long as the scheduler is fair. Consider

the case where p holds at some point in the execution. Since fairness is enforced, f will

always eventually get executed. As transient p holds in f , ¬p will eventually hold.

Finally, transient is compositional as the inheritance rule suggests. This rule is very

similar to the one for safety properties discussed in Section 4.4.3. If transient p holds

in all subcomponents fi of f , then transient p also holds in f . The rule applies for

both in seq and parallel composition. However, there is actually no need to have an

inheritance rule for parallel composition as the concurrency rule implies this rule.

4.5.2 Ensures

Presented below is the rule that defines en, which utilises both co and transient.

{r} f {(p ∧ ¬q) co (p ∨ q), transient (p ∧ ¬q) | s}
{r} f {p en q | s} (en)

4.5.3 Leads-to

Similar to UNITY, leads-to or 7→ is defined using en. There are three rules that estab-

lish leads-to, which are basis, transitivity, and disjunction.
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{r} f {p en q | s}
{r} f {p 7→ q | s} (basis)

{r} f {p 7→ q | s} {r} f {q 7→ r | s}
{r} f {p 7→ r | s} (transitivity)

{r} f {(∀p ∈ S. p 7→ q) | s}
{r} f {(∨p ∈ S. p) 7→ q | s} (disjunction)

The basis rule allows us to derive p 7→ q if p en q holds. As the name suggests, the

transitivity rule indicates that leads-to is transitive. Lastly, the disjunction rule states

that if every predicate p in a finite (or infinite) set S leads-to q, then the disjunction

of S also leads-to q.

4.6 Summary

The safety property proof of the distributed counter example in Section 4.4.5 is fairly

simple. While both Bilateral Proof and Owicki-Gries require annotations, Owicki-Gries

requires an extra step of interference freedom testing. There is also no need to introduce

extra conditions such as the rely and guarantee in the Rely/Guarantee method. The

limitations of only having local variables can be overcome by using the invariance rule.

Additionally, this method provides a way to write sequential programs easily unlike in

UNITY, while still being able to prove both safety and progress properties.
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Chapter 5

Isabelle/HOL

This chapter explains the syntax of Isabelle/HOL that is used commonly in this the-

sis. Additionally, a brief explanation of how proofs work in Isabelle is also presented.

Isabelle [Pau94] is a generic theorem prover, whereas Isabelle/HOL [NPW02] is a spe-

cialisation of Isabelle for higher-order logic (HOL).

5.1 Types

The type system in HOL resembles functional programming languages. There are

predefined types such as bool, nat, list, etc. We can create an alias of the existing

types using the keyword type synonym.

5.2 Datatype

In Isabelle, the keyword datatype is used to define new data types. A datatype is

defined by a list of constructors with argument types, separated by |. The general form

is

datatype (α1, . . . , αn) t = C1 τ1,1 . . . τ1,k1 | . . . | Cm τm,1 . . . τm,km

where αi are distinct type variables (the parameters), Ci are distinct constructor names

and τi,j are the argument types.

For example, one can define the type of natural numbers as

datatype nat = 0 | Suc nat
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It uses two constructors, 0 and Suc. The values of type nat are 0, Suc 0, Suc (Suc 0),

etc.

5.3 Functions

Non-recursive functions can be defined using definition or abbreviation. The only

difference is, when used, definitions need to be expanded explicitly, while abbreviations

are expanded automatically.

definition mult :: "nat ⇒ nat ⇒ nat" where "mult x y ≡ x * y"

abbreviation mult’ :: "nat ⇒ nat ⇒ nat" where "mult’ x y ≡ x * y"

Recursive functions are usually defined using primrec or fun. primrec or primitive

recursion indicates that each recursive call peels off a datatype constructor from one of

the arguments. This allows Isabelle to automatically prove termination. fun is more

general than primrec. It allows arbitrary pattern matching in all parameters and

termination can usually be proved automatically by Isabelle.

primrec add :: "nat ⇒ nat ⇒ nat" where

"add 0 y = y"

| "add (Suc x) y = Suc 0 + add x y"

fun ack2 :: "nat ⇒ nat ⇒ nat" where

"ack2 n 0 = Suc n"

| "ack2 0 (Suc m) = ack2 (Suc 0) m"

| "ack2 (Suc n) (Suc m) = ack2 (ack2 n (Suc m)) m"

5.4 Inductive Definitions

The keyword inductive defines the least predicate that is closed under a set of axioms

and inference rules. It is analogous to an inductively defined set except that it is a

predicate.

For example, we define an inductive predicate below that describes even numbers.

inductive even_pred :: "nat ⇒ bool" where

zero: "even_pred 0"

| step: "even_pred n =⇒ even_pred (Suc (Suc n))"
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Isabelle generates an induction principle referred to as rule induction. This allows us to

prove a property for every value that satisfies the inductive predicate. It works similarly

to mathematical induction, where we first prove the base cases, then the inductive steps

which are formed by our base set of rules. Most of the proofs in this thesis use rule

induction.

5.5 Theorems and Proofs

5.5.1 Theorems

A theorem in Isabelle, in general, has the following form.

[[ A1; ...; An ]] =⇒ B

The implication =⇒ is used to separate the premises and conclusion of the theorem.

The brackets above are simply expanded to A1 =⇒ ... =⇒ An =⇒ B.

5.5.2 Proofs

The general schema of the proofs is

lemma name: <goal>

apply (<method>)

apply (<method>)

...

done

The keyword lemma (or theorem) establishes a new theorem to be proved as well as

giving a name to the theorem.

In Isabelle, the proof state consists of a list of subgoals to prove. When we first declare

a lemma, we have one subgoal to prove, namely the goal itself.

The keyword apply is used to apply a particular proof strategy on the current subgoal.

The current subgoal is defined to be the subgoal that is first in the list. Every apply

operation will do one of the following behaviours depending on the strategies used.

• proves a subgoal, in which the subgoal is then removed from the list of subgoals

• splits a subgoal into multiple subgoals
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• transforms a subgoal to a simpler version of it, making it easier to prove

The following proof strategies are those used most often in this thesis.

• rule, erule, frule, drule apply theorems with forward or backward reasoning.

• simp uses term rewriting in order to simplify the terms in the subgoals.

• induction performs an induction, suitable for any inductive definitions. We can

specify which rule to use, e.g. apply (induction rule: nat.induct).

• case or case_tac splits the current subgoal into different cases.

• subgoal_tac inserts a formula as an additional premise.

• Automated methods such as clarsimp, auto, blast, and fastforce attempt to

automatically prove a subgoal.

The keyword done indicates that all subgoals have been proved and hence the lemma

is proved.
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Chapter 6

Formalisation and Soundness

Proof of Bilateral Proof in

Isabelle/HOL

This chapter presents the formalisation and soundness proof of Bilateral Proof in Is-

abelle/HOL. The formalisation uses a similar approach from previous work on Owicki-

Gries and Rely/Guarantee formalisation in Isabelle/HOL [PN02].

The formalisation is broken down into five main steps. First, the programming language

is formalised. Afterwards, we define what it means for the program specification of the

form {r} f {Q | s} and the perpetual properties to be valid. The concept of local

annotations is then formalised. The next step is formalising the proof rules. These

include the local annotation rules, meta-rules and rules in perpetual properties. The

final step is to carry out the soundness proofs of these rules.

The complete list of the Isabelle theory files can be found here.

6.1 Formalisation of the Language

We want to formalise the programming language shown in Section 4.2.1. There are two

approaches to formalise a language in Isabelle, deep embeddings and shallow embeddings.

In contrast to the former where language syntax/terms and semantics are represented

separately, the latter expresses a term directly as its semantics.
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Although a shallow embedding may simplify reasoning since it deals with the semantics

directly without worrying about the syntax, a deep embedding is more favourable for

Bilateral Proof. The syntactic layer in deep embeddings allows us to retrieve all actions

of a particular component. This is particularly useful because the rules to define safety

and progress use the actions of each component.

Additionally, the semantics of the programs will be expressed using small-step opera-

tional semantics. This semantics captures step by step executions, and therefore allows

us to observe the interleaving of concurrent programs.

6.1.1 State Space

We choose state to be a function from variable names (string) to values (natural num-

ber). Boolean expressions, annotations, and invariants are represented as predicates

over states.

type synonym vname = string

type synonym state = "vname ⇒ nat"

type synonym bexp = "state ⇒ bool"

type synonym ann = "state ⇒ bool"

type synonym inv = "state ⇒ bool"

6.1.2 Syntax

We define the syntax of the language with datatype com.

type synonym state_rel = "(state × state) set"

datatype com =

DONE

| ABORTED

| Action ann state_rel ("{|_|} ACTION _")

| Semi com com ("_;;_")

| If ann bexp com com ("{|_|} IF _ THEN _ ELSE _")

| While ann ann bexp inv com ("{|_|} {|_|} WHILE _ _ DO _")

| Parallel "com list" "ann list" ("PARALLEL _ _")

| Post_ann ann ("{|_|} POSTANN")

We can think of the text inside the brackets on RHS as an alias to each construct.

Each component (excluding DONE and ABORTED) has its local annotation embedded in
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the syntax. They are represented inside the brackets {|_|}.

We discuss each component further below.

• DONE indicates the program has terminated.

• ABORTED indicates the program does not satisfy some of its local annotations.

• Action is represented as a relation over states. As a consequence, the actions in

this system can have non-determinism. The actions are done this way to allow

the if statement with multiple guards shown in the distributed counter example

(Section 4.3.3).

• Semi is the sequential composition (or semicolon) of two components. It does not

have its own local annotation but it gets the annotation from the first component.

• If is the usual if/else statement.

• While is the standard while loop with invariant. A while loop has two annotations

at the front. The first annotation is the local annotation. The second annotation

represents the local part of the while loop’s conditional, which is there solely to

help prove progress properties.

• Parallel is the parallel composition which takes in a list of com rather than

limiting it to two components. It also takes in a list of postconditions (ann list)

to simplify the soundness proof of parallel composition.

• Post_ann is used to help prove the soundness of parallel composition. Every time a

component running in parallel terminates, it will be substituted with a Post_ann,

with the annotation being the same as the terminated component’s postcondition.

As Post_ann is intended only to help prove the soundness of parallel composition,

no program should be written using a Post_ann.

6.1.3 Small-Step Semantics

Small-step semantics defines the execution of a program to be consecutive transitions

between configurations. A configuration is a program fragment and state pair, which

in Isabelle has the type com × state.

These transitions are of the form (c, s) → (c′, s′). Executing a component c in a state

s produces a component c′ with a new state s′. In terms of terminology, we say that

(c, s) is reduced to (c′, s′).
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In our formalisation, we assume that the executions of programs are infinite. That is,

for any (c, s), it is always possible to be reduced to some (c′, s′).

We want to make sure that any component that does not satisfy its local annotation

is reduced to ABORTED. Here, we define a function com_pre to extract a local annota-

tion/precondition of a component.

fun com_pre :: "com ⇒ ann" where

"com_pre DONE = true"

| "com_pre ABORTED = false"

| "com_pre ({|pre|} ACTION _) = pre"

| "com_pre (c1;;_) = com_pre c1"

| "com_pre ({|pre|} IF _ THEN _ ELSE _) = pre"

| "com_pre ({|pre|} {|local_b|} WHILE _ _ DO _) = pre"

| "com_pre (PARALLEL Ps Ts) = And (map com_pre Ps)"

| "com_pre ({|pre|} POSTANN) = pre"

Though DONE and ABORTED do not have their own local annotation, we assign true and

false as their local annotation respectively. We choose to do so based on the idea that

any state should satisfy the local annotation of DONE, and the opposite for ABORTED.

Another alternative is to use an option type, where the annotation of DONE and ABORTED

is None. However, this will make proofs tedious.

The local annotation of a parallel component is simply the conjunction of the local

annotation of each subcomponent.

Semantics

We define the small-step semantics inductively using a set of axioms and rules about

transitions between configurations.

inductive small_step :: "com × state ⇒ com × state ⇒ bool" (infix "→" 55) where

Abort: "¬ com_pre c s =⇒ (c, s) → (ABORTED, s)"

| DoneR: "(DONE, s) → (DONE, s)"

| Action: "[[ (s, s’) ∈ state_rel; pre s ]] =⇒
({|pre|} ACTION state_rel, s) → (DONE, s’)"

| ActionR: "[[ ∀ s’. (s, s’) /∈ state_rel; pre s ]] =⇒
({|pre|} ACTION state_rel, s) → ({|pre|} ACTION state_rel, s)"

| Semi1: "[[ (c1, s) → (DONE, s’) ]] =⇒ (c1;;c2, s) → (c2, s’)"
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| Semi2: "[[ (c1, s) → (c1’, s’); com_pre c1 s; c1’ 6= DONE ]] =⇒
(c1;;c2, s) → (c1’;;c2, s’)"

| IfT: "[[ b s; pre s ]] =⇒ ({|pre|} IF b THEN c1 ELSE c2, s) → (c1, s)"

| IfF: "[[ ¬ b s; pre s ]] =⇒ ({|pre|} IF b THEN c1 ELSE c2, s) → (c2, s)"

| WhileT: "[[ b s; pre s ]] =⇒
({|pre|} {|local_b|} WHILE b i DO c, s) →
(c;;{|i|} {|local_b|} WHILE b i DO c, s)"

| WhileF: "[[ ¬ b s; pre s ]] =⇒
({|pre|} {|local_b|} WHILE b i DO c, s) →
({|i and not local_b|} ACTION {(s, s’). s = s’}, s)"

| ParA: "[[ i < length Ps; ∀ j<length Ps. j 6= i −→ Ps!j = {|Ts!j|} POSTANN;

Ps!i = c; (c, s) → (DONE, s’); com_pre (PARALLEL Ps Ts) s ]] =⇒
(PARALLEL Ps Ts, s) → (DONE, s’)"

| ParD: "[[ i < length Ps; ∃ j<length Ps. j 6= i ∧ Ps!j 6= {|Ts!j|} POSTANN;

Ps!i = c; (c, s) → (DONE, s’); Ps’ = Ps[i:=({|Ts!i|} POSTANN)];

com_pre (PARALLEL Ps Ts) s ]] =⇒
(PARALLEL Ps Ts, s) → (PARALLEL Ps’ Ts, s’)"

| Par: "[[ i < length Ps; Ps!i = c; (c, s) → (c’, s’); c’ 6= DONE;

Ps’ = Ps[i:=c’]; com_pre (PARALLEL Ps Ts) s ]] =⇒
(PARALLEL Ps Ts, s) → (PARALLEL Ps’ Ts, s’)"

We will go through each of the rules in more detail.

• Abort ensures a component is reduced to ABORTED when its local annotation is

false. Note that (ABORTED, s) → (ABORTED, s) satisfies this rule.

• DoneR is there to achieve infinite executions.

• Action and ActionR define the different reduction for actions depending on the

value of the guard. If the guard is true, it will be reduced to DONE and the state

is changed accordingly from state_rel. Otherwise, the action is blocking and

nothing is changed.

• Semi1 and Semi2 state that in a sequential composition, if the first component

terminates, only the second component remains to be executed. Otherwise, we

can substitute the first component with its reduction.

• IfT and IfF state that we reduce an if statement to the component in the IF
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branch if the condition b holds in the state s, or with the component in the ELSE

branch otherwise. In either case, the state is left unchanged.

• WhileT and WhileF state that if the condition b holds in the state s, it is reduced

to the body followed by the original while loop. Otherwise, it is reduced to an

action that does nothing, called skip. This will then be reduced to DONE in the

next step.

One might think that there is no point in adding a skip as the execution goes to

DONE regardless. However, this is not true in Bilateral Proof. The skip actually

plays a big role in a progress property rule, which will be discussed later.

• ParA, ParD, and Par are the rules for parallel composition. Each rule states how

the parallel composition makes a step when the ith component makes a step.

ParA states that the parallel composition is reduced to DONE if the ith component

is reduced to DONE and all the other components are some POSTANN, i.e. has

terminated.

In ParD, the ith component is also reduced to DONE, but there exist some compo-

nents which have not terminated. In this case, we substitute the ith component

with a POSTANN.

Par explains the case when the ith component takes a step and the resulting com-

ponent is not DONE. The parallel composition step substitutes the ith component

with the new component.

In each of these rules, the state of the parallel composition changes the same way

as the state change in the execution of the ith component.

We also define a reflexive transitive closure of the small-step semantics to represent the

execution of a program, written as →*.

abbreviation

small_steps_star :: "com × state ⇒ com × state ⇒ bool" (infix "→*" 55)

where

"x →* y ≡ star small_step x y"

6.2 Validity of Program Specifications

We need to define what it means for a program specification of the form {r} f {Q | s}
from Section 4.3.1 to be correct or valid. It is usually written as |= {r} f {Q | s}.
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Before being able to do so, we need to formalise the meaning of each of the perpetual

properties discussed in Section 4.4 and 4.5.

6.2.1 Perpetual Properties

Similar to the language formalisation, we separate the syntax and the semantics of

perpetual properties. Below is a datatype called perpetual that represents the syntax.

datatype perpetual =

Co ann ann ("_ CO _")

| Stable ann ("STABLE _")

| Constant vname ("CONSTANT _")

| Invariant ann ("INVARIANT _")

| Transient ann ("TRANSIENT _")

| Ensure ann ann ("_ EN _")

| Leads_to ann ann ("_ 7→ _")

Recall that perpetual properties are properties that hold throughout an execution of a

program. We define a helper predicate called reachable_sat, where reachable_sat P f

s means that every reachable configuration, i.e. program and state pair, starting from

(f, s) satisfies P.

definition reachable_sat :: "(com ⇒ state ⇒ bool) ⇒ com ⇒ state ⇒ bool" where

"reachable_sat P f s ≡ ∀ f’ s’. (f, s) →* (f’, s’) −→ P f’ s’"

Safety Properties

In our formalisation, co means that for any reachable program that starts from the

initial program and state pair, if the program makes a step and p holds before, then q

holds after the step.

definition co :: "ann ⇒ ann ⇒ com ⇒ state ⇒ bool" where

"co p q f s ≡
reachable_sat

(λf’ s’. ∀ f’’ s’’. p s’ ∧ (f’, s’) → (f’’, s’’) −→ q s’’) f s"

The special cases of co, namely stable, constant, and invariant, are defined using

the co definition.

definition stable :: "ann ⇒ com ⇒ state ⇒ bool" where

"stable p ≡ co p p"
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definition "constant" :: "vname ⇒ com ⇒ state ⇒ bool" where

"constant e f s ≡ ∀ c. (stable (λs. s e = s c)) f s"

definition invariant :: "ann ⇒ com ⇒ state ⇒ bool" where

"invariant p f s ≡ p s ∧ stable p f s"

Progress Properties

All progress properties are concerned with eventuality. Eventuality requires a property

to be satisfied in whichever path the program takes. Therefore, we need to define all

possible paths within a program in order to define progress properties.

Here, paths are functions from indices (natural number) to configurations. The ith index

represents the configuration produced after taking i steps from the initial configuration.

We define is_path P f s to be true iff P is a valid path that starts from (f, s). These

valid paths are collected to a set in the paths definition.

definition is_path :: "(nat ⇒ com × state) ⇒ com ⇒ state ⇒ bool" where

"is_path P f s ≡ P 0 = (f, s) ∧ (∀ n. P n → P (n + 1))"

definition paths :: "com ⇒ state ⇒ (nat ⇒ com × state) set" where

"paths f s = {P. is_path P f s}"

We have discussed the meaning of transient p from the paper, which is if p holds at

some point, then eventually ¬p holds. We formalise transient slightly differently to

directly include the postf mentioned in the basis rule (Section 4.5.1).

In our formalisation, transient means that in every possible path, if at some index i, p

holds and the program has not terminated, then at some index j bigger or equal to i,

¬p holds or the program terminates. A program is terminated if it is a DONE or ABORTED.

definition transient :: "ann ⇒ com ⇒ state ⇒ bool" where

"transient p f s ≡
(∀ path∈paths f s.

∀ i f s. path i = (f, s) ∧ p s ∧ ¬ has_terminated f −→
(∃ j f’ s’. j ≥ i ∧ path j = (f’, s’) ∧ ((not p) s’ ∨ has_terminated f’)))"

Ensures and leads-to are defined in a similar way as transient.

definition ensures :: "ann ⇒ ann ⇒ com ⇒ state ⇒ bool" where
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"ensures p q f s ≡
(∀ path∈paths f s.

∀ i f s. path i = (f, s) ∧ p s −→
((not q) s −→ (∃ f’ s’. path (Suc i) = (f’, s’) ∧ (p or q) s’)) ∧
(∃ j f’ s’. j ≥ i ∧ path j = (f’, s’) ∧ (p s’ ∧ has_terminated f’ ∨ q s’)))"

definition leads_to :: "ann ⇒ ann ⇒ com ⇒ state ⇒ bool" where

"leads_to p q f s ≡
(∀ path∈paths f s.

∀ i f s. path i = (f, s) ∧ p s ∧ ¬ has_terminated f −→
(∃ j f’ s’. j ≥ i ∧ path j = (f’, s’) ∧ (q s’ ∨ has_terminated f’)))"

Notice that all transient and leads_to properties trivially hold in programs that ter-

minate. However, for ensures, it requires p to hold upon termination if it does not

establish q.

Syntax to Semantics

We can now define a function that translates the syntactic perpetual property to its

semantics.

primrec eval :: "perpetual ⇒ com ⇒ state ⇒ bool" where

"eval (p CO q) = co p q"

| "eval (STABLE p) = stable p"

| "eval (CONSTANT e) = constant e"

| "eval (INVARIANT i) = invariant i"

| "eval (TRANSIENT p) = transient p"

| "eval (p EN q) = ensures p q"

| "eval (p 7→ q) = leads_to p q"

6.2.2 Valid Specification

The valid specification definition is presented below.

definition

valid_spec :: "ann ⇒ com ⇒ perpetual set ⇒ ann ⇒ bool" ("|= {_} _ {_ | _}")

where

"|= {r} f {Q | t} ≡
(∀ s. r s −→

reachable_sat (λf’ s’. has_terminated f’ −→ holds t f’ s’) f s ∧
(∀ op ∈ Q. eval op f s))"
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Here, holds q f s ≡ q s ∧ (not (=) f) ABORTED.

valid_spec means that if we start in a state s which satisfies the precondition r,

1. For any reachable program from the initial configuration (f, s), if it terminates,

then the postcondition t holds and the program is not ABORTED. In other words,

the program never violates any of its local annotations during its execution.

2. Every perpetual property in Q holds for any execution of f starting in an s-state.

6.3 Formalisation of Local Annotations

Before formalising the proof rules, we need to formalise the concept of local annotations,

discussed in Section 4.3.2. More specifically, we want to be able to check whether a

program is annotated correctly, i.e. every annotation is local.

Any arbitrary annotation in a program without parallel composition is automatically

local. As there is only one thread running at a time, it must have exclusive write-

access to any variable. Thus, it is enough to check only the annotations for parallel

composition.

There are a few approaches to do this.

1. In each thread, retrieve all variables that are mentioned in the annotations and all

variables that are being written to. The annotations of a thread are local if there

is no other thread that writes to a variable in the annotations. This approach

requires the formalisation of annotations and actions to be syntactic.

2. Instead of retrieving the variables as the first approach suggests, we ask the users

who write the program to declare the variables mentioned in the annotations and

variables written in the actions for each thread.

3. Use an approach inspired by Owicki-Gries’ interference freedom proof. For each

annotation, we check if it remains valid upon execution of any action in another

thread, i.e. |= {ann} action {ann}. This is similar to stable in safety properties.

The first approach is the one resembling the definition of locality, i.e. having exclusive

write-access by observing the variables. However, the current formalisation of the
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programming language does not have the syntactic layer. The second approach does

not require the syntactic layer, but it relies on the user’s input, which is not ideal.

Therefore, we choose to use the last approach. This approach has a weaker definition

of locality but works well with the current formalisation.

One might argue that the complexity of the method we choose will be quadratic similar

to Owicki-Gries. While this is true, if we can prove that Bilateral Proof works with this

weaker definition of locality, then the definition of locality from the paper also works.

It is just a matter of implementing the syntactic layer.

The function below, all_anns, collects all annotations of a component.

fun all_anns :: "com ⇒ ann set" where

"all_anns DONE = {true}"

| "all_anns ABORTED = {false}"

| "all_anns ({|pre|} ACTION _) = {pre}"

| "all_anns (c1;;c2) = all_anns c1 ∪ all_anns c2"

| "all_anns ({|pre|} IF b THEN c1 ELSE c2) = {pre} ∪ all_anns c1 ∪ all_anns c2"

| "all_anns ({|pre|} {|local_b|} WHILE b i DO c) =

{pre, i, i and not local_b} ∪ all_anns c"

| "all_anns (PARALLEL Ps Ts) = all_anns_par (map all_anns Ps) Ts"

| "all_anns ({|pre|} POSTANN) = {pre}"

Notice that the annotations of While include i and (i and not local_b). These are the

annotations we get after we execute a while loop and hence included here. The local

annotations of a parallel composition are defined to be the conjunction between any

annotation or postcondition of each thread.

The next step is to retrieve all actions of a particular component. This is done by the

function actions_of below.

fun actions_of :: "com ⇒ com set" where

"actions_of ({|pre|} ACTION c) = {{|pre|} ACTION c}"

| "actions_of (c1;;c2) = actions_of c1 ∪ actions_of c2"

| "actions_of ({|_|} IF _ THEN c1 ELSE c2) = actions_of c1 ∪ actions_of c2"

| "actions_of ({|_|} {|local_b|} WHILE b i DO c) =

actions_of c ∪ {{|i and not local_b|} ACTION {(s, s’). s = s’}}"

| "actions_of (PARALLEL Ps Ts) = (
⋃
c ∈ set Ps . actions_of c)"

| "actions_of _ = {}"

Recall that in the WhileF small-step semantics rule, the while loops gets reduced to skip.

Therefore, while loops have an extra action (skip) in order to match the semantics.
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The function action_state_rel extracts the local annotation and the state relation

from an action.

fun action_state_rel :: "com ⇒ (ann × state_rel)" where

"action_state_rel ({|pre|} ACTION c) = (pre, c)"

| "action_state_rel _ = (true, {})"

Now we define is_ann_stable to be a predicate that asserts if an annotation or a

postcondition is valid upon the execution of actions in a component, i.e. stable.

definition is_ann_stable :: "ann ⇒ com ⇒ bool" where

"is_ann_stable p f ≡
(∀ a pre state_rel. a ∈ actions_of f −→

(pre, state_rel) = action_state_rel a −→
(∀ s s’. (s, s’) ∈ state_rel −→ p s −→ p s’))"

Building on top of is_ann_stable, we can define if the annotations of a component are

stable in another component.

definition is_com_stable :: "com ⇒ com ⇒ bool" where

"is_com_stable f g ≡ ∀ p. p ∈ all_anns f −→ is_ann_stable p g"

Finally, valid_ann takes in a list of components running in parallel and a list of their

postconditions. We check if the annotations and the postcondition of each component

are stable in the other components.

definition valid_ann’ :: "com ⇒ ann ⇒ com ⇒ bool" where

"valid_ann’ f t g ≡ is_ann_stable t g ∧ is_com_stable f g"

definition valid_ann :: "com list ⇒ ann list ⇒ bool" where

"valid_ann Ps Ts =

(∀ i. i < length Ps −→
(∀ j. j < length Ps −→ i 6= j −→ valid_ann’ (Ps!i) (Ts!i) (Ps!j)))"

6.4 Formalisation of Proof Rules

We have decided to formalise a representative subset of the proof rules. These proof

rules are stratified into two layers. The first layer concerns rules that do not involve

perpetual properties. The second layer includes rules that mention perpetual properties

as well as the rules from the first layer.

This is done because of two reasons.
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• The Bilateral Proof paper is structured such that local annotations come before

introducing any perpetual property. It seems to be the case that whenever we

want to derive a specification of a program, we apply the rules in two steps. The

first step is to apply the local annotation rules. After that, we can apply the

perpetual properties rules.

• Having the local annotation rule for parallel composition and the invariance rule in

the same layer causes the soundness proof of parallel composition to be especially

difficult, and would make the corresponding proof sketch in Misra’s paper [Mis17]

unsound or at least highly incomplete.

6.4.1 First Layer: biloof_no_perpetual

The first layer contains the local annotation rules and the meta-rules specific to only pre

and postcondition. It is inductively defined using the biloof_no_perpetual predicate

below. In Isabelle, we write the specifications as ` {r} f {t}.

inductive biloof_no_perpetual:: "ann ⇒ com ⇒ ann ⇒ bool" ("` {_} _ {_}") where

b_action[intro]:

"[[ ∀ s s’. (s, s’) ∈ state_rel ∧ pre s −→ t s’ ]] =⇒
` {pre} {|pre|} ACTION state_rel {t}"

| b_semi[intro]:

"[[ ` {r} c1 {com_pre c2}; ` {com_pre c2} c2 {t} ]] =⇒ ` {r} c1;;c2 {t}"

| b_if[intro]:

"[[ ∀ s. (pre and b) s −→ com_pre c1 s; ∀ s. (pre and not b) s −→ com_pre c2 s;

` {com_pre c1} c1 {t}; ` {com_pre c2} c2 {t} ]] =⇒
` {pre} {|pre|} IF b THEN c1 ELSE c2 {t}"

| b_while[intro]:

"[[ ∀ s. pre s −→ i s; ∀ s. (i and b) s −→ com_pre c s; ` {com_pre c} c {i};

∀ s. (not b) s −→ (not local_b) s; ∀ s. (i and not local_b) s −→ t s ]] =⇒
` {pre} {|pre|} {|local_b|} WHILE b i DO c {t}"

| b_par:

"[[ valid_ann Ps Ts; length Ps = length Ts; length Ps > 0;

∀ i<length Ps. ` {com_pre (Ps!i)} Ps!i {Ts!i} ∨ Ps!i = {|Ts!i|} POSTANN;

∃ i<length Ps. Ps!i 6= {|Ts!i|} POSTANN ]] =⇒
` {com_pre (PARALLEL Ps Ts)} PARALLEL Ps Ts {And Ts}"
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| b_strengthen_weaken:

"[[ ` {r} f {t}; ∀ s. r’ s −→ r s; ∀ s. t s −→ t’ s ]] =⇒ ` {r’} f {t’}"

| b_conjunction:

"[[ ` {r} f {t}; ` {r’} f {t’} ]] =⇒ ` {r and r’} f {t and t’}"

| b_disjunction:

"[[ ` {r} f {t}; ` {r’} f {t’} ]] =⇒ ` {r or r’} f {t or t’}"

b_action, b_semi, b_if, b_while, and b_par are the rules to construct local annota-

tions. The remaining rules, b_strengthen_weaken, b_conjunction, and b_disjunction,

are meta-rules. We explore b_par in more detail below.

Local Annotation Rule for Parallel Composition

The local annotation rule for parallel composition from Section 4.3.2 is defined using

the rule b_par.

[[valid_ann Ps Ts; length Ps = length Ts; 0 < length Ps;

∀ i<length Ps.

` {com_pre (Ps ! i)} Ps ! i {Ts ! i} ∨ Ps ! i = {|Ts ! i|} POSTANN;

∃ i<length Ps. (not (=) (Ps ! i)) ({|Ts ! i|} POSTANN)]]

=⇒ ` {com_pre (PARALLEL Ps Ts)} PARALLEL Ps Ts {And Ts}

The original rule assumes the derivability of each component’s specification and the

locality of each component’s annotations. Here, we modify the premises in order to

help prove soundness. We explain some of the premises in more details below.

• valid_ann Ps Ts formalises the locality of the annotations and postconditions.

• 0 < length Ps requires the number of components running in parallel to be any-

thing except 0. In other words, we do not want the components to be an empty

list.

• ∀ i<length Ps. ` {com_pre (Ps ! i)} Ps ! i {Ts ! i} ∨ Ps ! i = {|Ts ! i|} POSTANN

states that for each component, either we can derive a specification or it has ter-

minated. This is there to help prove the soundness of this rule.

• ∃ i<length Ps. (not (=) (Ps ! i)) ({|Ts ! i|} POSTANN) does not allow every com-

ponent to be a POSTANN. If all the components have terminated, the program should

be a DONE instead of PARALLEL.
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6.4.2 Second Layer: biloof

As briefly mentioned, every specification derived in the first layer is included in this

second layer. On top of that, the meta-rules that contain perpetual properties, safety

properties rules, and progress properties rules are included in this layer. We inductively

define the rules using the biloof predicate below. In Isabelle, we write the specifications

as `̀ {r} f {Q | t}.

inductive biloof:: "ann ⇒ com ⇒ perpetual set ⇒ ann ⇒ bool" ("`̀ {_} _ {_ | _}")

where

bl_biloof_no_perpetual:

"` {r} f {t} =⇒ `̀ {r} f {{} | t}"

| bl_strengthen_weaken:

"[[ `̀ {r} f {Q | t}; ∀ s. r’ s −→ r s; Q’ ⊆ Q; ∀ s. t s −→ t’ s ]] =⇒
`̀ {r’} f {Q’ | t’}"

| bl_conjunction:

"[[ `̀ {r} f {Q | t}; `̀ {r’} f {Q’ | t’} ]] =⇒ `̀ {r and r’} f {Q ∪ Q’ | t and t’}"

| bl_disjunction:

"[[ `̀ {r} f {Q | t}; `̀ {r’} f {Q’ | t’} ]] =⇒ `̀ {r or r’} f {Q ∩ Q’ | t or t’}"

| b_co:

"[[ `̀ {r} f {Q | t}; ∀ s. p s −→ q s;

∀ a pre state_rel. a ∈ actions_of f −→ (pre, state_rel) = action_state_rel a

−→ (∀ s s’. (s, s’) ∈ state_rel −→ (pre and p) s −→ q s’) ]] =⇒
`̀ {r} f {Q ∪ {p CO q} | t}"

| b_co_inheritance_semi:

"[[ ` {r} c1 {com_pre c2}; ` {com_pre c2} c2 {t}; `̀ {r} c1 {Q | com_pre c2};

(p CO q) ∈ Q; `̀ {com_pre c2} c2 {Q’| t}; (p CO q) ∈ Q’ ]] =⇒
`̀ {r} c1;;c2 {{p CO q} | t}"

| b_co_inheritance_if:

"[[ ∀ s. (pre and b) s −→ com_pre c1 s; ∀ s. (pre and not b) s −→ com_pre c2 s;

` {com_pre c1} c1 {t}; ` {com_pre c2} c2 {t}; `̀ {com_pre c1} c1 {Q | t};

(p CO q) ∈ Q; `̀ {com_pre c2} c2 {Q’| t}; (p CO q) ∈ Q’ ]] =⇒
`̀ {pre} {|pre|} IF b THEN c1 ELSE c2 {{p CO q} | t}"

| b_co_inheritance_while:

"[[ ∀ s. pre s −→ i s; ∀ s. (i and b) s −→ com_pre c s;
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` {com_pre c} c {i}; `̀ {com_pre c} c {Q | t}; (p CO q) ∈ Q;

∀ s. (not b) s −→ (not local_b) s; ∀ s. (i and not local_b) s −→ t s ]] =⇒
`̀ {pre} {|pre|} {|local_b|} WHILE b i DO c {{p CO q} | t}"

| b_co_inheritance_parallel:

"[[ valid_ann Ps Ts; length Ps = length Ts; length Ts = length Qs;

length Ps > 0; ∀ i<length Ps. ` {com_pre (Ps!i)} Ps!i {Ts!i};

∀ i<length Ps. `̀ {com_pre (Ps!i)} Ps!i {Qs!i | Ts!i};

∀ i<length Qs. (p CO q) ∈ (Qs!i) ]] =⇒
`̀ {com_pre (PARALLEL Ps Ts)} PARALLEL Ps Ts {{p CO q} | And Ts}"

| b_invariant:

"[[ `̀ {r} f {Q | t}; ∀ s. r s −→ i s;

∀ a pre state_rel. a ∈ actions_of f −→ (pre, state_rel) = action_state_rel a

−→ (∀ s s’. (s, s’) ∈ state_rel −→ (pre and i) s −→ i s’) ]] =⇒
`̀ {r} f {Q ∪ {INVARIANT i} | t}"

| b_invariant_pre_post:

"[[ `̀ {r} f {Q | t}; (INVARIANT i) ∈ Q ]] =⇒ `̀ {r and i} f {Q | t and i}"

| b_invariant_co:

"[[ `̀ {r} f {Q | t}; (p CO q) ∈ Q; (INVARIANT i) ∈ Q ]] =⇒
`̀ {r} f {Q ∪ {p and i CO q and i} | t}"

| b_transient_basis:

"[[ `̀ {r} f {Q | t};

∀ a pre state_rel. a ∈ actions_of f −→ (pre, state_rel) = action_state_rel a

−→ (∀ s. (pre and p) s −→ (∃ s’. (s, s’) ∈ state_rel)) ∧
(∀ s s’. (s, s’) ∈ state_rel −→ (pre and p) s −→ (not p) s’) ]] =⇒
`̀ {r} f {Q ∪ {TRANSIENT p} | t}"

| b_transient_sequencing:

"[[ ` {r} c1 {com_pre c2}; ` {com_pre c2} c2 {t}; `̀ {r} c1 {Q | com_pre c2};

∀ s. r s −→ (∀ path∈paths c1 s. path_will_terminate path);

`̀ {com_pre c2} c2 {Q’| t}; (TRANSIENT p) ∈ Q’ ]] =⇒
`̀ {r} c1;;c2 {{TRANSIENT p} | t}"

| b_transient_inheritance_semi:

"[[ ` {r} c1 {com_pre c2}; ` {com_pre c2} c2 {t}; `̀ {r} c1 {Q | com_pre c2};

(TRANSIENT p) ∈ Q; `̀ {com_pre c2} c2 {Q’| t}; (TRANSIENT p) ∈ Q’ ]] =⇒
`̀ {r} c1;;c2 {{TRANSIENT p} | t}"

| b_transient_inheritance_if:
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"[[ ∀ s. (pre and b) s −→ com_pre c1 s; ∀ s. (pre and not b) s −→ com_pre c2 s;

` {com_pre c1} c1 {t}; ` {com_pre c2} c2 {t}; `̀ {com_pre c1} c1 {Q | t};

(TRANSIENT p) ∈ Q; `̀ {com_pre c2} c2 {Q’| t}; (TRANSIENT p) ∈ Q’ ]] =⇒
`̀ {pre} {|pre|} IF b THEN c1 ELSE c2 {{TRANSIENT p} | t}"

| b_ensures:

"[[ `̀ {r} f {Q | t}; ((p and not q) CO (p or q)) ∈ Q;

(TRANSIENT (p and not q)) ∈ Q ]] =⇒
`̀ {r} f {Q ∪ {p EN q} | t}"

| b_leads_to_ensures:

"[[ `̀ {r} f {Q | t}; (p EN q) ∈ Q ]] =⇒ `̀ {r} f {Q ∪ {p 7→ q} | t}"

| b_leads_to_transitive:

"[[ `̀ {r} f {Q | t}; (p 7→ q) ∈ Q; (q 7→ r) ∈ Q ]] =⇒
`̀ {r} f {Q ∪ {p 7→ r} | t}"

| b_leads_to_disjunction:

"[[ `̀ {r} f {Q | t}; ∀ p∈set S. (p 7→ q) ∈ Q ]] =⇒
`̀ {r} f {Q ∪ {(Or S) 7→ q} | t}"

Most of the formalisation follows exactly from the rules we have discussed in Chapter

4. We explain the formalisation of the rules that are either not straightforward or have

some changes below.

co Rule

The following rule called b_co formalises the co rule (Section 4.4.1).

[[`̀ {r} f {Q | t}; ∀ s. p s −→ q s;

∀ a pre state_rel.

a ∈ actions_of f −→
(pre, state_rel) = action_state_rel a −→
(∀ s s’. (s, s’) ∈ state_rel −→ (pre and p) s −→ q s’)]]

=⇒ `̀ {r} f {Q ∪ {p CO q} | t}

In this rule, we add an assumption that p⇒ q as we have skips in our language, which

Misra left unspecified.
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Safety Inheritance Rules

While Misra only states one meta-rule for inheritance (Section 4.4.3), we explicitly

instantiate it for seq and parallel composition as we have fixed a concrete sequential

sublanguage to work with. In our formalisation, the rules are b_co_inheritance_semi,

b_co_inheritance_if, b_co_inheritance_while, and b_co_inheritance_par.

To explain how the formalisation works, let us take the inheritance rule for sequential

composition as an example, shown below. The formalisation of the other language

constructs follows a similar pattern.

{r} c1 {m} {m} c2 {s}
{r} c1; c2 {s}

(1) {r} c1 {σ | m} (2) {m} c2 {σ | s} (3)

{r} c1; c2 {σ | s}
(inheritance semi)

The following is our Isabelle formalisation called b_co_inheritance_semi.

[[` {r} c1 {com_pre c2}; ` {com_pre c2} c2 {t}; `̀ {r} c1 {Q | com_pre c2};

(p CO q) ∈ Q; `̀ {com_pre c2} c2 {Q’ | t}; (p CO q) ∈ Q’]]

=⇒ `̀ {r} c1;;c2 {{p CO q} | t}

We formalise (1) using `. It is done as such since the premises/conclusion do not

mention any perpetual property. This is represented by ` {r} c1 {com_pre c2} and `
{com_pre c2} c2 {t}, which are the premises of the local annotation rule for sequential

composition (b_semi in Section 6.4.1).

We formalise (2) and (3) using `̀ , i.e. `̀ {r} c1 {Q | com_pre c2}, (p CO q) ∈ Q, `̀
{com_pre c2} c2 {Q’ | t}, and (p CO q) ∈ Q’.

Invariance Rules

We add a rule to introduce invariants in a specification, called b_invariant.

[[`̀ {r} f {Q | t}; ∀ s. r s −→ i s;

∀ a pre state_rel.

a ∈ actions_of f −→
(pre, state_rel) = action_state_rel a −→
(∀ s s’. (s, s’) ∈ state_rel −→ (pre and i) s −→ i s’)]]

=⇒ `̀ {r} f {Q ∪ {INVARIANT i} | t}

It is defined in a similar way as the co rule, with an additional assumption r ⇒ i, where

r is the precondition and i is the invariant.
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The remaining invariance rules, b_invariant_pre_post and b_invariant_co, strengthen

the pre and postcondition or co with an invariant.

Transient Basis Rule

We formalise the transient basis rule from Section 4.5.1 using the rule b_transient_basis.

[[`̀ {r} f {Q | t};

∀ a pre state_rel.

a ∈ actions_of f −→
(pre, state_rel) = action_state_rel a −→
(∀ s. (pre and p) s −→ (∃ s’. (s, s’) ∈ state_rel)) ∧
(∀ s s’. (s, s’) ∈ state_rel −→ (pre and p) s −→ (not p) s’)]]

=⇒ `̀ {r} f {Q ∪ {TRANSIENT p} | t}

The original rule has transient (p ∧ ¬postf ) in the conclusion, while in our formalisa-

tion, we have transient p. This is done because ¬postf is encoded directly inside the

formalisation of transient, which allows us to leave out ¬postf in the formalisation of

this rule.

Transient Sequencing Rule

The following rule called b_transient_sequencing formalises part of the transient se-

quencing rule from Section 4.5.1.

[[` {r} c1 {com_pre c2}; ` {com_pre c2} c2 {t}; `̀ {r} c1 {Q | com_pre c2};

∀ s. r s −→ (∀ path∈paths c1 s. path_will_terminate path);

`̀ {com_pre c2} c2 {Q’ | t}; (TRANSIENT p) ∈ Q’]]

=⇒ `̀ {r} c1;;c2 {{TRANSIENT p} | t}

We have discussed that if f does not always terminate, we require transient p to hold

in both f and g. On the other hand, if we know f always terminates no matter which

path it takes, it is enough for transient p to only hold in g. The former is formalised

using b_transient_inheritance_semi, while the latter is what b_transient_sequencing

formalises.
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6.5 Soundness

The final step of the formalisation is proving soundness. Soundness means all state-

ments which can be derived are true or valid. More specifically, we want to prove that

any program specification derived from biloof_no_perpetual or from biloof is valid.

We prove the soundness of these two layers separately.

6.5.1 Soundness of biloof_no_perpetual

We want to prove the soundness of the specifications derived from biloof_no_perpetual

(Section 6.4.1) using the theorem below.

theorem biloof_no_perpetual_sound: ` {r} f {t} =⇒ |= {r} f {{} | t}

The proof is by induction on ` {r} f {t}. Isabelle generates eight subgoals, each

requires proving soundness of a particular rule in biloof_no_perpetual.

Recall that the rules in biloof_no_perpetual consist of meta-rules and local annotation

rules. The meta-rules are proved automatically, while the local annotation rules require

induction or case analysis on the execution of small-step semantics (→*). We prove

the soundness of the rules for action and seq in a very similar way to the soundness of

Hoare logic. Here, we will discuss the soundness proof of parallel composition further.

Soundness of Parallel Composition

The corresponding subgoal generated by Isabelle is as follows.

[[valid_ann Ps Ts; length Ps = length Ts; 0 < length Ps;

∀ i<length Ps.

` {com_pre (Ps ! i)} Ps ! i {Ts ! i} ∨ Ps ! i = {|Ts ! i|} POSTANN;

∀ i<length Ps.

|= {com_pre (Ps ! i)} Ps ! i {{} | Ts ! i} ∨ Ps ! i = {|Ts ! i|} POSTANN]]

=⇒ |= {And (map com_pre Ps)} PARALLEL Ps Ts {{} | And Ts}

The other soundness proofs in this thesis utilise the fact that the program specifications

in the premises are valid (|=). However, this is not the case for the parallel composition

rule, where the fact that the program specifications are derivable (`) is more important

than being valid. After removing validity from our premises and simplifying the terms,

we get
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[[(f, s) →* (f’, s’); f = PARALLEL Ps Ts; valid_ann Ps Ts; has_terminated f’;

length Ps = length Ts; (not (=) Ts) []; And (map com_pre Ps) s;

∀ j<length Ts.

` {com_pre (Ps ! j)} Ps ! j {Ts ! j} ∨ Ps ! j = {|Ts ! j|} POSTANN]]

=⇒ And Ts s’ ∧ (not (=) f’) ABORTED

The subgoal above requires us to prove that if we execute a parallel program and it

terminates, then the postcondition holds and the resulting program is not ABORTED.

The proof is by induction on →*. The base case is an execution that takes zero steps,

whereby f = f’ and s = s’. Therefore, we have has_terminated (PARALLEL Ps Ts) in

the premises, which is false. The base case is trivially proved.

In the inductive step, we have (PARALLEL Ps Ts, s) → (f’’, s’’) and (f’’, s’’) →*

(f’, s’) for some f’’ and s’’. Recall that we have three small-step semantics rules for

parallel composition, namely ParA, ParD, and Par. Hence, there are three ways PARALLEL

Ps Ts can make a step.

We present one representative case here, which is the one that makes a step using Par.

In Par, we have (Ps ! i, s) → (c’, s’) in our premises and (PARALLEL Ps Ts, s) →
(PARALLEL Ps’ Ts, s’) as our conclusion where Ps’ = Ps[i := c’].

We prove the soundness of this case by using the induction hypothesis. This requires

us to prove

valid_ann Ps’ Ts ∧
length Ps’ = length Ts ∧
And (map com_pre Ps’) s’ ∧
(not (=) Ts) [] ∧
(∀ j<length Ts.

` {com_pre (Ps’ ! j)} Ps’ ! j {Ts ! j} ∨ Ps’ ! j = {|Ts ! j|} POSTANN)

We break the conjunction and prove each of the five assumptions one-by-one.

• valid_ann Ps’ Ts

We have valid_ann Ps Ts as our assumption, which means that each component

is stable in any other component. As the ith component is the only component

that changes after the parallel composition makes a step, we only need to prove

that Ps’ ! i is stable in any other component, and vice versa. We prove two

similar lemmas, each for each direction of stability.

– [[(g, s) → (g’, s’); is_com_stable g h; com_pre g s; ` {com_pre g} g {t}]]
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=⇒ is_com_stable g’ h

– [[(h, s) → (h’, s’); is_com_stable g h]] =⇒ is_com_stable g h’

As Ps’ ! i is the resulting reduction from Ps ! i, we can prove that the annota-

tions and the actions of Ps’ ! i are a subset of the annotations and the actions

of Ps ! i respectively. The property about annotations is used to prove the first

lemma whereas the property about actions is used to prove the second lemma.

• length Ps’ = length Ts

Since the number of components does not change, this is trivial.

• (not (=) Ts) []

This is immediate as we have 0 < length Ts in the premises.

• And (map com_pre Ps’) s’

This is equivalent to proving ∀ j<length Ps’. com_pre (Ps’ ! j) s. We prove

two cases, i = j and i 6= j.

For the first case, we prove the following lemma, which is proved by induction on

the small-step relation (→).

[[(c, s) → (c’, s’); com_pre c s; ` {com_pre c} c {t}]] =⇒ com_pre c’ s’

The second case requires us to prove that executing Ps ! i does not invalidate

com_pre (Ps ! j). The proof is immediate once we prove

[[(f, s) → (f’, s’); is_ann_stable p f; p s]] =⇒ p s’

The proof of this lemma is by induction on → and is intuitively obvious based on

how we define stability.

• ∀ j<length Ts. ` {com_pre (Ps’ ! j)} Ps’ ! j {Ts ! j} ∨ Ps’ ! j = {|Ts ! j|}
POSTANN

We again break this down into two cases, i = j and i 6= j. The i 6= j case is

trivial as the jth component remains the same. We prove the i = j case using

the following lemma.

[[(f, s) → (f’, s’); com_pre f s; ` {com_pre f} f {t}; (not (=) f’) DONE]]

=⇒ com_pre f’ s’ ∧ ` {com_pre f’} f’ {t}

The lemma suggests that the derivability of components is preserved throughout

any execution of a program. It is worth noting that this lemma would not work if

the rules were not stratified, i.e. this lemma is not true if invariance rules can be
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applied to strengthen the postcondition. The POSTANN construct is also introduced

solely in order to help prove this particular lemma.

The lemma is proved by checking that the inverse of each local annotation rule

holds. For language constructs that are not mentioned in the rules, we prove that

it is impossible to derive a specification of the constructs. For example,

– [[` {r} f {t}; f = DONE]] =⇒ False

– [[` {r} f {t}; f = c1;;c2]] =⇒ ` {r} c1 {com_pre c2} ∧ ` {com_pre c2} c2

{t}

6.5.2 Soundness of biloof

We define the soundness of the specifications derived from biloof (Section 6.4.2) below.

theorem biloof_sound: `̀ {r} f {Q | t} =⇒ |= {r} f {Q | t}

We prove by induction on `̀ {r} f {Q | t}. Isabelle generates a subgoal for each rule

in biloof, which are 20 of them. We discuss four representative cases below.

Soundness of co Rule

The following subgoal is the subgoal generated for the co rule (b_co).

[[|= {r} f {Q | t}; ∀ s. p s −→ q s; actions_co f p q]]

=⇒ |= {r} f {Q ∪ {p CO q} | t}

where actions_co f p q means that executing any action of f in a p-state establishes

a q-state. The definition in Isabelle is as follows.

actions_co f p q ≡
∀ a. a ∈ actions_of f −→

(∀ pre state_rel.

(pre, state_rel) = action_state_rel a −→
(∀ s s’. (s, s’) ∈ state_rel −→ (pre and p) s −→ q s’))

Notice that this is an assumption in b_co, which we abbreviate to actions_co f p q

throughout this section for clarity.

After some simplification, we obtain
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[[(f, s) →* (f’, s’); (f’, s’) → (f’’, s’’); ∀ s. p s −→ q s; p s’;

actions_co f p q]]

=⇒ q s’’

The subgoal states that if we start an execution from (f, s) and reach a configuration

(f’, s’) where p holds in s’, then if (f’, s’) makes a step to (f’’, s’’), q holds in

s’’.

We have mentioned that actions_of f’ ⊆ actions_of f. Using that fact, it is now

enough to prove the following simpler lemma.

[[(f’, s’) → (f’’, s’’); ∀ s. p s −→ q s; p s’; actions_co f’ p q]] =⇒ q s’’

The proof is by induction on →, and the subgoals are proved automatically by Isabelle.

Soundness of co Inheritance Rules

We will explain how the soundness proof works in the inheritance rule for sequential

composition (b_co_inheritance_semi), shown below. The same approach works for the

other language constructs.

[[` {r} c1 {com_pre c2}; ` {com_pre c2} c2 {t}; `̀ {r} c1 {Q | com_pre c2};

|= {r} c1 {Q | com_pre c2}; (p CO q) ∈ Q; `̀ {com_pre c2} c2 {Q’ | t};

|= {com_pre c2} c2 {Q’ | t}; (p CO q) ∈ Q’]]

=⇒ |= {r} c1;;c2 {{p CO q} | t}

We apply the local annotation rule for sequential composition (b_semi) forward from `
{r} c1 {com_pre c2} and ` {com_pre c2} c2 {t}, and we obtain ` {r} c1;;c2 {t}. As

` is sound, we can conclude that |= {r} c1;;c2 {{} | t}.

Now the lemma looks as following.

[[|= {r} c1;;c2 {{} | t}; `̀ {r} c1 {Q | com_pre c2};

|= {r} c1 {Q | com_pre c2}; (p CO q) ∈ Q; `̀ {com_pre c2} c2 {Q’ | t};

|= {com_pre c2} c2 {Q’ | t}; (p CO q) ∈ Q’]]

=⇒ |= {r} c1;;c2 {{p CO q} | t}

We can prove this using the fact that the co rule is sound. That is, it is enough to

prove that actions_co (c1;;c2) p q holds. To show this, we first show that actions_co

f p q holds if we have `̀ {r} f {Q | t} ∧ (p CO q) ∈ Q.

[[`̀ {r} f {Q | t}; (p CO q) ∈ Q]] =⇒ actions_co f p q
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This is proved by induction on `̀ . Using this fact, we obtain actions_co c1 p q and

actions_co c2 p q. Hence, actions_co (c1;;c2) p q holds and b_co_inheritance_semi

is sound.

Soundness of Invariance Rules

We would like to prove that strengthening the pre and postcondition with an invariant

(b_invariant_pre_post) preserves the validity of the specification. The other rule which

strengthens co is proved in a similar way.

[[|= {r} f {Q | t}; (INVARIANT i) ∈ Q]] =⇒ |= {r and i} f {Q | t and i}

After doing some simplification, the corresponding subgoal is

[[r s; i s; invariant i f s;

reachable_sat (λf’ s’. has_terminated f’ −→ holds t f’ s’) f s]]

=⇒ reachable_sat (λf’ s’. has_terminated f’ −→ holds (t and i) f’ s’) f s

We can prove this by proving a stronger lemma below which states that i must hold

at any point in the program.

invariant i f s =⇒ reachable_sat (λf’. i) f s

This is proved by first unfolding the definitions of invariant and reachable_sat, then

applying induction on →*.

Soundness of Transient Basis Rule

We want to prove the soundness of the transient basis rule (b_transient_basis) using

the lemma below.

[[`̀ {r} f {Q | t}; |= {r} f {Q | t}; actions_transient f p]]

=⇒ |= {r} f {Q ∪ {TRANSIENT p} | t}

where

actions_transient f p ≡
∀ a pre state_rel.

a ∈ actions_of f −→
(pre, state_rel) = action_state_rel a −→
(∀ s. (pre and p) s −→ (∃ s’. (s, s’) ∈ state_rel)) ∧
(∀ s s’. (s, s’) ∈ state_rel −→ (pre and p) s −→ (not p) s’)
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Similar to the soundness of the co rule, we have the abbreviation actions_transient f

p for clarity.

Simplifying the terms, we have

[[` {r} f {t}; r s; actions_transient f p; is_path path f s;

path i = (f’, s’); p s’; (not has_terminated) f’]]

=⇒ ∃ j≥i. ∃ f’ s’. path j = (f’, s’) ∧ ((not p) s’ ∨ has_terminated f’)

Consider the following facts.

• From the is_path definition, we can deduce (f, s) →* (f’, s’). We also know

that f’ has not terminated. Using these two facts, we can prove that there exists

some r’ and t’ such that ` {r’} f’ {t’} ∧ r’ s’.

• For any valid path, it is easy to see that any suffix of that path is also a valid

path starting from the later configuration. That is, λn. path (n + i) is a valid

path that starts from (f’, s’). We can then add path’ = (λn. path (n + i)) ∧
is_path path’ f’ s’ in our premises, and rewrite the conclusion as ∃ j f’’ s’’.

path’ j = (f’’, s’’) ∧ ((not p) s’’ ∨ has_terminated f’’).

• We have also mentioned that actions_of f’ ⊆ actions_of f for any (f, s) →
(f’, s’). We can extend this fact to the reflexive transitive closure, i.e. if (f, s)

→* (f’, s’), then actions_of f’ ⊆ actions_of f. From (f, s) →* (f’, s’)

and actions_transient f p, we can deduce actions_transient f’ p.

Using these facts, it is enough to prove

[[` {r’} f’ {t’}; r’ s’; p s’; actions_transient f’ p; is_path path’ f’ s’]]

=⇒ ∃ j f’’ s’’. path’ j = (f’’, s’’) ∧ (not p) s’’

While it is intuitive to prove this by induction, it is not very clear what to apply the

induction on. If we apply induction on `, then in the parallel composition case, we

need to reason about the paths of f [] g from the paths of f and the paths of g. As f

and g might interfere with each other when running in parallel, there can be a path in

f [] g which f or g will not take if they are to run individually.

Another idea to approach this is to remember the fact that a program has finite text.

We know that the reduction of an If or While to its body does not change the state.

However, as there is only a finite amount of program text, it is impossible to have an

infinite number of If or While sitting in any program. Therefore, at some point in the
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execution, it must reach an action and execute the action. This action will establish

not p.

We implement the idea above by defining a function that overapproximates how many

steps to take at most until we reach an action.

fun num_same_state :: "com ⇒ nat" where

"num_same_state DONE = 1"

| "num_same_state ABORTED = 1"

| "num_same_state ({|_|} ACTION _) = 0"

| "num_same_state (c1;;c2) = num_same_state c1"

| "num_same_state ({|_|} IF _ THEN c1 ELSE c2) =

1 + max (num_same_state c1) (num_same_state c2)"

| "num_same_state ({|_|} {|_|} WHILE b i DO c) = 1 + num_same_state c"

| "num_same_state (PARALLEL Ps Ts) = sum_list (map num_same_state Ps)"

| "num_same_state ({|_|} POSTANN) = 0"

The values for DONE, ABORTED, and POSTANN are adjusted accordingly to work with the

proofs. As num_same_state f is a finite number, we can have num_same_state f < n for

some n as an additional premise.

[[num_same_state f’ < n; ` {r’} f’ {t’}; r’ s’; p s’; actions_transient f’ p;

is_path path’ f’ s’]]

=⇒ ∃ j f’’ s’’. path’ j = (f’’, s’’) ∧ (not p) s’’

The proof proceeds by induction on n. The base case, n = 0, is trivial. In the inductive

step, we prove that either the next step of f’ establishes not p (f’ executes an action)

or num_same_state is reduced. If f establishes not p, then we are done. Otherwise, we

can use the induction hypothesis and we are also done. Here is the lemma that describes

num_same_state f’’ < num_same_state f’ ∨ (not p) s’’ holds after f’ makes a step,

proved by induction on →.

[[(f’, s’) → (f’’, s’’); ` {r’} f’ {t’}; r’ s’; p s’; actions_transient f’ p]]

=⇒ num_same_state f’’ < num_same_state f’ ∨ (not p) s’’

Discussion

This transient basis rule is not sound if we have an arbitrary small-step semantics.

More specifically, in our small-step semantics for a while loop when the condition is

false (WhileF in Section 6.1.3), if we reduce it to DONE instead of skip, then this rule is

not sound.

Consider the program below.
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WHILE true DO

WHILE false DO

true → x := x + 1

If WhileF reduces the while loop to DONE, then we can prove that transient (x = 0)

holds in this example. There is only one action in this program, i.e. true → x := x +

1. It is easy to see that x = 0 implies the guard true. Additionally, executing x := x

+ 1 when x = 0 holds establishes x 6= 0.

However, this is not true, i.e. transient (x = 0) does not hold in this program. If x = 0

holds at the start of the program, then no matter how long we execute the program,

we will never reach a state in which x 6= 0 holds.

To fix this, we introduce a skip to be executed after we get out of a loop. This is

exactly what the rule WhileF in the small-step semantics does. As the skip appears in

the actions of a while loop, this rule can be proved sound.

In the example above, we now have two actions, namely the action that is in the

program text, and a “ghost” action, skip. Executing a skip when x = 0 holds does not

change the state. Hence, we can no longer conclude that transient (x = 0) holds in

the program.
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Chapter 7

Evaluation

This chapter presents an evaluation of the results of this thesis, i.e. the formalisation

and soundness proof of Bilateral Proof. A mechanisation of the safety property proof

of the distributed counter example using the formalisation we have in Isabelle will also

be shown.

7.1 Formalisation and Soundness Proof

The formalisation and soundness proof are automatically evaluated by Isabelle. As a

theorem prover, Isabelle automatically verifies if the proofs are correct. This prevents

any error in the proofs that might occur if we were doing pen-and-paper proofs instead.

7.2 Example: Distributed Counter

We have successfully mechanised the safety property proof of the distributed counter

example from Section 4.4.5 in Isabelle using the formalisation we now have.

7.2.1 Distributed Counter Formalisation

Recall the distributed counter program to be a parallel composition of a finite number of

threads. For simplicity, we assume that there are only two threads running in parallel.

The proof for an arbitrary number of threads works the same way.
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We formalise the distributed counter as follows. We call the first thread dist_ctr_com1

and the second thread dist_ctr_com2. The distributed counter program is defined using

the abbreviation dist_ctr.

definition Assign :: "bexp ⇒ vname ⇒ (state ⇒ nat) ⇒ state_rel" where

"Assign G n v ≡ {(s, s’). G s ∧ s’ = s(n := v s)}"

definition dist_ctr_com :: "vname ⇒ vname ⇒ vname ⇒ com" where

"dist_ctr_com ctr old new ≡
{|true|}
ACTION {(s, s’). s’ = (s(old := 0))(new := 0)};;

{|true|} {|true|}
WHILE true true DO

({|true|}
ACTION (Assign true new (λs. s old + 1));;

{|λs. s new = s old + 1|}
ACTION

( Assign (λs. s ctr = s old) ctr (λs. s new)

∪ Assign (λs. s ctr 6= s old) old (λs. s ctr)))"

definition dist_ctr_com1 where

"dist_ctr_com1 ≡ dist_ctr_com ’’ctr’’ ’’old1’’ ’’new1’’"

definition dist_ctr_com2 where

"dist_ctr_com2 ≡ dist_ctr_com ’’ctr’’ ’’old2’’ ’’new2’’"

abbreviation dist_ctr where

"dist_ctr ≡ PARALLEL [dist_ctr_com1, dist_ctr_com2] [true, true]"

7.2.2 Safety Property Proof

We wish to prove the safety property

∀m ∈ Z. ctr = m co (ctr = m ∨ ctr = m+ 1)

in our distributed counter program.

The following is the formalisation in Isabelle.

[[p = (λs. s ’’ctr’’ = m); q = (λs. s ’’ctr’’ = m ∨ s ’’ctr’’ = m + 1)]]

=⇒ |= {true} dist_ctr {{p CO q} | true}

Since we know biloof is sound, we can substitute the conclusion with

`̀ {true} dist_ctr {{p CO q} | true}
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We are not able to apply the inheritance rule for parallel composition straight away as

the format of the conclusion is a bit different. We need to rewrite it as follows.

[[Ps = [dist_ctr_com1, dist_ctr_com2]; Ts = [true, true];

p = (λs. s ’’ctr’’ = m); q = (λs. s ’’ctr’’ = m ∨ s ’’ctr’’ = m + 1)]]

=⇒ `̀ {com_pre (PARALLEL Ps Ts)} PARALLEL Ps Ts {{p CO q} | And Ts}

Applying b_co_inheritance_parallel, we need to prove these three subgoals.

• valid_ann [dist_ctr_com1, dist_ctr_com2] [true, true]

• [[p = (λs. s ’’ctr’’ = m); q = (λs. s ’’ctr’’ = m ∨ s ’’ctr’’ = m + 1)]]

=⇒ `̀ {com_pre dist_ctr_com1} dist_ctr_com1 {{p CO q} | true}

• [[p = (λs. s ’’ctr’’ = m); q = (λs. s ’’ctr’’ = m ∨ s ’’ctr’’ = m + 1)]]

=⇒ `̀ {com_pre dist_ctr_com2} dist_ctr_com2 {{p CO q} | true}

The first subgoal concerns the locality of the assertions and is proved automatically by

Isabelle.

The second and third subgoal are analogous to each other. We will discuss only the

second subgoal here. By rearranging the terms and applying b_co, we now need to

prove

• [[p = (λs. s ’’ctr’’ = m); q = (λs. s ’’ctr’’ = m ∨ s ’’ctr’’ = m + 1)]]

=⇒ ∀ a. a ∈ actions_of dist_ctr_com1 −→
(∀ pre state_rel.

(pre, state_rel) = action_state_rel a −→
(∀ s s’. (s, s’) ∈ state_rel −→ (pre and p) s −→ q s’))

• [[p = (λs. s ’’ctr’’ = m); q = (λs. s ’’ctr’’ = m ∨ s ’’ctr’’ = m + 1)]]

=⇒ `̀ {com_pre dist_ctr_com1} dist_ctr_com1 {{} | true}

The first subgoal is automatically proved by Isabelle.

In the second subgoal, we apply bl_biloof_no_perpetual to the conclusion and obtain

` {com_pre dist_ctr_com1} dist_ctr_com1 {true} as the new conclusion. The proof

is fairly straightforward, using the local annotation rules in biloof_no_perpetual.
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Chapter 8

Summary

This chapter summarises the work in this thesis, the contribution this thesis made, and

potential future work.

8.1 Results

The thesis contains a formalisation and soundness proof of 28 rules in Bilateral Proof

worth 2000 lines of Isabelle code. These 28 rules represent a large subset of the rules in

Bilateral Proof which are useful for any future verification using Bilateral Proof. Thus,

the aim of this thesis, which is to mechanise a representative subset of Bilateral Proof

and prove the soundness of the rules, has been met.

Assumptions

The soundness proof relies upon these two assumptions.

1. The rules are stratified into two layers. The first layer includes rules that do not

mention perpetual properties. The second layer contains the rules in the first

layer as well as rules that introduce or use perpetual properties.

2. There is always an extra action in a while loop, i.e. skip. This skip is not

something a programmer would write, but we add it in our semantics because

otherwise, the transient basis rule is not sound.
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Limitations and Approach

The formalisation in this thesis does not include two of the transient rules. They are

the concurrency rule and the inheritance rule for while loops.

To implement the concurrency rule, we need a definition of fairness and program

counter. The challenges include finding the right definition of fairness and to change the

whole program semantics with a program counter, which is a heavyweight operation.

The inheritance rule for while loops can be defined similarly as the inheritance rule for

sequential composition and if/else, in which we formalised. However, the extra skip

that we add in while loops may require some modification to the rule.

8.2 Contribution

First of all, this thesis contributes by providing the soundness proof of Bilateral Proof.

Jayadev Misra published the Bilateral Proof paper without proving the soundness. As

briefly discussed in Chapter 4, this framework is able to provide a simpler way to prove

the correctness of concurrent programs. However, the logic could not be relied on until

there is a proof whether it is actually correct, i.e. the soundness proof.

We have also found a couple of assumptions that we need in order to prove the sound-

ness. Finally, the formalisation we have in Isabelle can be used for any future verification

using Bilateral Proof in Isabelle.

8.3 Future Work

There are a lot of opportunities for future work based on this thesis. The first one is

to add the formalisation and soundness proof of the remaining transient rules. We can

then investigate what progress properties Bilateral Proof can or cannot prove.

Additionally, it would be interesting to know whether the proofs in Bilateral Proof are

always simpler than Owicki-Gries or Rely-Guarantee. In order to do so, a comparison

of the proofs in the three frameworks for various programs is needed.

A completeness proof of Bilateral Proof and Owicki-Gries/Rely-Guarantee can also be
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conducted, i.e. whether Bilateral Proof is able to verify every program that Owicki-

Gries/Rely-Guarantee are able to.

Finally, once all the work is done, we hope Bilateral Proof can be a useful new frame-

work that allows scalable verification of concurrent programs, given its simplicity and

compositionality.
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