
School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

Adaptive Evolution Strategies

by

Xuefeng Li

Thesis submitted as a requirement for the degree of

Bachelor of Science (Honours) in Computer Science

Submitted: June 2018

Supervisor: Alan Blair

Student ID: z5085453

Topic ID: 3834

Adaptive Evolution Strategies Xuefeng Li

Abstract

Evolution Strategies (ES) is a traditional black box optimization method which has
recently gained renewed interest as a training method for neural networks, and as an
alternative to Reinforcement Learning. For high dimensional problems, an isotropic
Gaussian is normally used. Variants such as Natural ES or CMA-ES allow a more
general covariance matrix but are computationally infeasible for large neural networks.
In this thesis, we explore a novel variant of ES, comparable to Natural ES or CMA-
ES, which is computationally efficient, allows parameters to be updated in an online
manner, and can accommodate distributions with both diagonal and skewed covariance.
We show that this algorithm can provide a statistically significant speedup for some
MuJoCo and OpenAI Gym environments, and we discuss the effect of the various
hyperparameter choices and algorithm components on the overall performance.

ii

Xuefeng Li Adaptive Evolution Strategies

Acknowledgements

My supervisor Alan Blair for his supervision, guidance and patient explanations.

Joel Mason for his valuable suggestions.

iii

Adaptive Evolution Strategies Xuefeng Li

Contents

1 Introduction 1

2 Background 3

2.1 Black-box Optimization . 3

2.2 Evolution Strategies . 4

2.2.1 Hill Climbing . 5

2.2.2 Search Gradient . 6

2.2.3 Limitation of Plain Search Gradient 7

2.2.4 Natural Evolution Strategy . 9

2.2.5 OpenAI’s Evolution Strategies 12

2.2.6 Adaptive Covariance . 13

3 Method 15

3.1 Proposed Algorithms . 15

3.2 Techniques . 19

3.2.1 Fitness Normalization . 19

3.2.2 Variance Regularization . 19

3.2.3 Virtual Batch Normalization . 20

iv

Xuefeng Li Adaptive Evolution Strategies

4 Implementation 21

4.1 Hardware . 21

4.1.1 NCI Raijin . 21

4.2 Software . 22

4.2.1 Modules . 22

4.2.2 Software Architecture . 23

4.2.3 Parrallelization . 24

5 Exerimental Results 26

5.1 Experimental Setup and Hyperparameters 27

5.1.1 Envrionments . 27

5.1.2 Hyperparameters(need to update) 28

5.2 Results . 31

6 Conclusion and Future Work 33

6.1 Conclusion . 33

6.2 Future Work . 34

Bibliography 35

v

Adaptive Evolution Strategies Xuefeng Li

List of Algorithms

1 General Procedure of Evolution Strategies 5
2 Evolution Strategies using Search Gradient 7
3 Evolution Strategies using Search Gradient 8
4 Natural Evolution Strategies . 10
5 OpenAI Evolution Strategies . 13

vi

Xuefeng Li Adaptive Evolution Strategies

List of Figures

2.1 ES optimization process . 4

2.2 Limitation of plain search gradient . 9

2.3 Illustration of the effect of multiplying with the inverse of FIM 11

4.1 Software Architecture . 23

5.1 Distributions updated with variant algorithms 26

5.2 Selected Environments . 27

5.3 Distribution of stopping times for Algorithm 1 28

5.4 Distribution of stopping times for Algorithm 1 29

5.5 Distribution of stopping times for Algorithm 2 30

5.6 Distribution of stopping times for Algorithm 3 30

5.7 Results for Half Cheetah . 31

5.8 Results for Pendulum . 32

5.9 Results for Inverted Double Pendulum 32

vii

Adaptive Evolution Strategies Xuefeng Li

viii

Xuefeng Li Adaptive Evolution Strategies

Chapter 1

Introduction

There has recently been an increasing interest in the use of evolution inspired opti-

mization methods for tasks traditionally solved using Reinforcement Learning (RL).

Evolution Strategies (ES) have been shown in (Salimans et al., 2017) to produce com-

parable results to standard policy gradient-based methods. Furthermore, despite the

higher sample complexity, its amenability to efficient parallelization means that ES

can be quick to train in terms of wall-clock time, given sufficient computational re-

sources. Additionally, ES has a number of advantages over traditional RL algorithms,

namely insensitivity to sparse and delayed rewards, and the ability to accommodate

non-differentiable elements in a policy network.

We explore a novel and efficient variant of ES, which can adjust the parameters of a

diagonal covariance matrix and can also accommodate skewed distributions over the

parameter space, i.e. those with non-diagonal covariance. This technique uses two

matrices of lower rank than the number of parameters, which stretch and compress the

distribution in specified directions.

In our experiments, we conduct an ablation study of the technique, training on the

MuJoCo (Todorov et al., 2012) environments using OpenAI Gym (Brockman et al.,

1

Adaptive Evolution Strategies Xuefeng Li

2016). We examine results when the variance of each dimension of the parameter space

is fixed, allowed to vary, both with and without the low-rank covariance approximation.

We also analyze the effect of various hyperparameter choices on the effectiveness of a

number of ES variants.

Our results show the adaptive covariance of the proposed algorithm is more effective

than ES with non-adaptive covariance.

2

Xuefeng Li Adaptive Evolution Strategies

Chapter 2

Background

In this chapter, we give an introduction to the background knowledge for this the-

sis. Starting with an overview of ES which belongs to a general class of black box

optimization. Then we introduce several variants of ES.

2.1 Black-box Optimization

Black-box optimization is a family of numerical optimization methods that aims to

find the best solution to some optimization problems without gradient information.

Formally, black-box optimization is defined as finding a solution x in a search space X:

x = arg min
x∈X

f(x), (2.1)

where f(x) is called the objective function.

Black-box optimization algorithms were originally created for solving optimization

problems where objective functions are unknown, and we can observe the inputs and

the outcomes. The objective function is like a black box, hence it is named black-box

optimization. As it does not rely on the gradient information, it can be used on func-

3

Adaptive Evolution Strategies Xuefeng Li

Figure 2.1: ES optimization process: At each iteration, a population of perturbed
parameters (in black) sampled from the current parameters(in white), and we move
the parameters to the direction(white arrow) where the perturbed parameters achieved
higher fitnesses.

tions that are not continuous or differentiable.

In black-box optimization, the function evaluation and parameter updates are normally

computationally expensive. Hence, we need to take these two elements into account

when designing a black-box optimization algorithm. In addition, the algorithm needs

to have the ability to find a solution as good as possible. To evaluate different black-

box optimization algorithms, there are mainly three criteria: 1) Number of function

evaluations or parameter updates for searching the optimum. 2) Computation time for

searching the optimum. 3) The difference between the fitness obtained with the final

solution and the optimum if it is known in advance.

The experimental framework of this thesis is based on these three criteria.

2.2 Evolution Strategies

ES is an optimization algorithm inspired by natural evolution. It was first proposed in

(Rechenberg, 1973) and then developed in (Schwefel, 1993). In addition, it has many

variants such as CMA-ES Hansen et al. (1995), NES Wierstra et al. (2014) which are

successful in solving optimization problems. The general procedure of ES can be de-

4

Xuefeng Li Adaptive Evolution Strategies

scribed as follows: At each iteration, a population of sample parameters is generated

by adding noise to the current parameters and all the sample parameters are evalu-

ated. Then the current parameters are updated based on these sampled evaluations to

achieve a higher expectation of fitnesses. This procedure is iterated until meeting the

stopping criteria. The algorithm is summarized in Algorithm 1.

Algorithm 1 General Procedure of Evolution Strategies

1: Initilization

2: repeat

3: Parameter sampling

4: Evaluation

5: Parameter updating

6: until Stopping criteria is met

2.2.1 Hill Climbing

Hill climbing is an optimization technique similar with ES except lacking the concept

of population. The basic idea of hill climbing is that starting with a random set of

parameters, generate perturbed parameters at each iteration to find a better solution.

If the perturbation generates a better solution, the perturbation will be kept as the new

parameters. Then repeat this procedure until no better solution is found with further

perturbing. The simplicity of this idea makes it popular in optimization research and

has been used widely for solving game problems for decades.

(Pollack and Blair, 1998) applied the simple hill climbing in learning the game of

backgammon. In their work, a standard feed-forward neural network was used as a

function approximator with the board information as input and all legal moves as out-

put. The learning procedure started with all weights of the neural network set to zero.

Then at each iteration, Gaussian noise was added to the weights and let the network

play against the mutant for a number of games. If the mutant wins more than half the

5

Adaptive Evolution Strategies Xuefeng Li

games, select it for the next generation.

Their work showed the simple hill climbing can achieve reasonable performance at the

early stage. However, there was a limitation of hill climbing which they called Buster

Douglas Effect. Due to the randomness of the game, the selected perturbation may

just be some lucky novice. This may make the perturbing generation move too far

from the previous generation, which means forgetting the learned weights and causes

the catastrophic effect on performance.

For avoiding the Buster Douglas Effect, rather than replacing the champion by the

challenger, they instead make only a small adjustment in the direction of (challenger -

champion):

champion = champion+ α(challenger − champion), (2.2)

where α is the learning rate.

At each iteration, by moving a small step to the challenger, most of the current decisions

are preserved thus avoiding the catastrophic replacement by a lucky novice challenger.

2.2.2 Search Gradient

The idea of Search Gradient was introduced in (Berny, 2000) and (Berny, 2001). As-

sume we have a fitness function F (x) we want to maximize, θ is the parameters vector

which defines the search distribution π(x|θ). At each iteration, a population of mutants

is generated from this distribution and evaluated. Instead of moving a small step to

the mutants with higher fitness, search gradient is computed as the sampled gradient

of expected fitness. The expected fitness under the search distribution can be written

as

J(θ) = Ep[f(x)] =

∫
f(x)p(x|θ)dx (2.3)

6

Xuefeng Li Adaptive Evolution Strategies

Taking the derivative gives

∇θJ(θ) = ∇θEp[f(x)] = ∇θ
∫
f(x)p(x|θ)dx

=

∫
f(x)∇θp(x|θ)dx

=

∫
f(x)∇θp(x|θ)

p(x|θ)

p(x|θ)
dx

=

∫
[f(x)∇θ log p(x|θ)]p(x|θ)dx

= Eθ[f(x)∇θ log p(x|θ)] (2.4)

This enables us to use Monte Carlo methods to estimate the gradient and update the

parameters using gradient ascent:

θ ← θ + η∇θJ(θ), (2.5)

where η it a learning rate parameter. Updating the parameters with the search gradient

is the core idea of ES. Algorithm 2 shows how ES uses the search gradient to do the

optimization.

Algorithm 2 Evolution Strategies using Search Gradient

1: Input: Learning rate η, distribution p(x|θ), initial policy parameters θ0

2: for t = 0, 1, 2, . . . , n do

3: Sample x1,. . . , xn ∼ p(x|θ)

4: Evaluate the fitnesses f(xi) for i = 1, . . . , n

5: Calculate log-derivatives ∇θ log p(xi|θ) for i = 1, . . . , n

6: θt+1 ← θt + η · 1n
∑n

i=1∇θ log p(xi|θ) · f(xi)

7: end for

In practice, the most popular search distribution is the multinormal distribution. Then

the algorithm can be written as in Algorithm 3.

2.2.3 Limitation of Plain Search Gradient

By updating with plain search gradient, we are actually updating the parameters in

the direction of the gradient widely believed it is also the steepest direction. However,

7

Adaptive Evolution Strategies Xuefeng Li

Algorithm 3 Evolution Strategies using Search Gradient

1: Input: Learning rate η, multinormal distribution N (µ,Σ)

2: for t = 0, 1, 2, . . . , n do

3: Sample x1,. . . , xn ∼ N (µ,Σ)

4: Evaluate the fitnesses f(xi) for i = 1, . . . , n

5: Calculate log-derivatives :

6: ∇µ logN (xi|µ,Σ) = Σ−1(xi − µ) for i = 1, . . . , n

7: ∇Σ logN (xi|µ,Σ) = −1
2Σ−1 + 1

2Σ−1(xi − µ)(xi − µ)TΣ−1 for i = 1, . . . , n

8: µ← µ+ η · 1n
∑n

i=1∇µ logN (xi|µ,Σ) · f(xi)

9: Σ← Σ + η · 1n
∑n

i=1∇Σ logN (xi|µ,Σ) · f(xi)

10: end for

this is true only when an orthonormal coordinate system is used in an Euclidean space.

Obviously, the parameter space here is not Euclidean but Riemannian. Hence, applying

plain search gradient may cause catastrophic effects in learning.

To see why, suppose we have an one-dimensional normal distribution x ∼ N (µ, σ), the

search gradients then become

∇µF =
x− µ
σ2

, (2.6)

∇σF =
(x− µ)2 − σ2

σ3
(2.7)

To let the distribution converge to a minimum, σ must decrease as the parameters

updating. However, updates of µ and σ both depend on σ. This correlation increases

the variance of the updates. We can see this by treating σ as part of the learning

rate, if σ is very small, the learning rate will become very large and cause overshooting

updates. But if σ is very large, the update step will become quite small and slow the

convergence procedure. This makes ES with plain search gradient unstable and hard

to converge.

8

Xuefeng Li Adaptive Evolution Strategies

Figure 2.2: Illustration of the limitation: from (1) to (2), µ is adjusted to make the
distribution cover the optimum. From (2) to (3), σ is reduced to allow for a precise lo-
calization of the optimum. But then from (3), the small σ causes a largely overshooting
update, leading to (1) again. Figure from (Wierstra et al., 2014)

2.2.4 Natural Evolution Strategy

To avoid the shortcomings of plain search gradient, Natural Evolution Strategies(NES)

(Wierstra et al., 2014) uses the natural gradient(Amari, 1998) which is a part of the

information geometry (Amari and Nagaoka, 2007) to do the updates. In information

geometry, the Fisher information matrix (FIM) is regarded as the Riemannian metric

on the statistical manifold, and then the direction of the steepest descent on the mani-

fold is used as the search direction, which is the natural gradient. In ES, the parameter

space is a Riemannian manifold and each point in the parameter space denotes a search

distribution, hence the natural gradient is the steepest search direction.

Recall that the aim of ES is to maximize the expected fitness J(θ), the natural gradient

can also be seen as the solution to the constrained optimization problem:

max
δθ

J(θ + δθ) ≈ J(θ) + δθT∇Jθ , (2.8)

s.t.D(θ + δθ||θ) = ε, (2.9)

where D(θ + δθ||θ) is the Kullback-Leibler divergence between distribution p(x|θ) and

9

Adaptive Evolution Strategies Xuefeng Li

p(x|θ + δθ) and ε is a small constant. Solving this constrained optimization problem

with Lagrangian multiplier gives

∇̃θJ = F−1∇θJ(θ) (2.10)

where

F =

∫
p(x|θ)∇θ log p(x|θ)∇θ log p(x|θ)Tdx (2.11)

= E[∇θ log p(x|θ)∇θ log p(x|θ)T] (2.12)

is the FIM of the search distribution. From the equation we can see that the FIM

can be estimated by sampling, using the derivatives ∇θ log p(x|θ) which are already

computed in ∇θJ(θ). The NES algorithm is summarized in algorithm 4.

Algorithm 4 Natural Evolution Strategies

1: Input: Learning rate η, distribution p(x|θ), initial policy parameters θ0

2: for t = 0, 1, 2, ...n do

3: Sample x1,. . . , xn ∼ p(x|θ)

4: Evaluate the fitnesses f(xi) for i = 1, . . . , n

5: Calculate log-derivatives ∇θ log p(xi|θ) for i = 1, . . . , n

6: ∇θJ ← 1
n

∑n
i=1∇θ log p(xi|θ) · f(xi)

7: F ← 1
n

∑n
i=1∇θ log p(xi|θ)∇θ log p(xi|θ)T

8: θt+1 ← θt + η · F−1∇θJ

9: end for

While NES solves the limitations of plain search gradient, since the update at each

iteration involves calculating the inverse of FIM, the complexity greatly increases to

O(n3). This leads to the infeasibility of applying it for solving high-dimensional prob-

lems like training neural networks.

10

Xuefeng Li Adaptive Evolution Strategies

Figure 2.3: Illustration of the effect of multiplying with the inverse of FIM. We have two
parameters for one dimensional Gaussian, θ = (µ, σ). On the left, the solid black arrows
indicate the gradient samples, while the blue dotted arrows are the gradient estimates
scaled with fitness. The green bold arrow indicates the estimated fitness gradient, while
the bold dashed (red) arrow indicates the corresponding natural gradient.
The gray ellipse indicates the covariance of gradient samples, multiply the inverse of
FIM to get natural gradient here is equivalent to multiply with the inverse of the
covariance of the gradient samples. This means gradient samples in the direction with
high variance will be compressed while those in the direction with low variance will be
enlarged. The right figure shows the effect of multiplying the inverse of the covariance
of sampled gradients. Figure from (Wierstra et al., 2014)

11

Adaptive Evolution Strategies Xuefeng Li

2.2.5 OpenAI’s Evolution Strategies

ES as a black box optimization algorithm have several attractive advantages: It is

easy for implementation, highly parallelizable and can be applied to various problems.

However, these black box optimization algorithms are criticized they are inefficient

compared with gradient-based optimization algorithm like stochastic gradient descent.

Besides, for solving reinforcement problems, it is widely believed that reinforcement

learning is a more efficient method in terms of timing and data than ES, especially for

complicated problems. These disadvantages make ES neglected for a long time.

A recent work of OpenAI (Salimans et al., 2017) renewed people’s interest in ES by

successfully training neural networks for solving a variety of reinforcement learning

problems with ES.

To overcome the limitations of plain search gradient while not greatly increases the

complexity, they make a compromise by using non-adaptive isotropic multi-normal dis-

tribution as the search distribution. This means the covariance matrix of the search

distribution is a non-adaptive diagonal matrix. Hence, at each iteration, only the mean

of the search distribution needs to be updated. Since the variance is fixed, the gradient

will not explode during training and thus stabilizing the process of convergence.

Another important factor for the success of OpenAI’s work is the high parallelizability

of ES. As pointed out in their work, there are three main properties which make ES

highly parallelizable: 1) It only updates after complete episodes, thus less communi-

cation between workers. 2) Each worker only needs to send/receive scalar fitnesses

to/from other workers provided the workers can reconstruct the parameters of other

workers. 3) ES does not require value function approximations. The algorithm is

showed in Alogirithm 5.

12

Xuefeng Li Adaptive Evolution Strategies

Algorithm 5 OpenAI Evolution Strategies

1: Input: Learning rate η, noise standard deviation σ, initial policy parameters θ0

2: Initialize: n workers with known random seeds, and initial parameters θ0

3: for t = 0, 1, 2, ...n do

4: for each worker i = 1, . . . , n do

5: Sample εi ∼ N (0, I)

6: Get fitnesses Fi = F (θt + σεi)

7: end for

8: Send all scalar returns Fi from each worker to every other worker

9: for each worker i = 1, ..., n do

10: Reconstruct all perturbations εj for j = 1, . . . , n

11: Set θt+1 ← θt + α 1
nσ

∑n
j=1 Fjεj

12: end for

13: end for

According to OpenAI’s experiments, ES can achieve competitive results on most Atari

games after one hour of training time and solve dynamic control problem in 10 minutes

with hundreds to thousands of parallel workers.

2.2.6 Adaptive Covariance

Even if OpenAI’s work has achieved good results with diagonal non-adaptive covari-

ance, there are still some drawbacks of non-adaptive covariance need to notice: 1) ES

with non-adaptive covariance tends to converge to a local minima with smaller curva-

ture compared to the global minima but with bigger curvature. 2) Adaptive covariance

will accelerate the speed of convergence by stretching the distribution.

To illustrate why non-adaptive covariance tends to converge to local minimum, recall in

ES we are optimizing the expected fitness Ep[f(x)] =
∫
f(x)p(x|θ)dx. If we are doing

the optimization in a fitness landscape with two regions, A with the global minimum

but has a bigger curvature while B has a local minimum but has a smaller curvature.

13

Adaptive Evolution Strategies Xuefeng Li

Even the smallest f(x) appears in A, the expected fitness in A may smaller than the

expected fitness in B, thus leading to the convergence to the local minimum.

Adaptive covariance can accelerate the process of convergence by stretching the sample

distribution in the direction with high fitnesses and squash in the direction with low

fitnesses. This is similar with adjusting the learning rate in different directions. This

also implies ES with non-diagonal covariance will achieve faster convergence than with

diagonal covariance.

14

Xuefeng Li Adaptive Evolution Strategies

Chapter 3

Method

As discussed in the previous chapter, non-diagonal adaptive covariance can accelerate

the process of convergence. However, with plain search gradient, the convergence is

unstable while using NES and other variants of ES is computationally infeasible for

high-dimensional problems. Here, we introduce the algorithm recently developed by

Alan Blair. It is designed to be more computationally efficient compared with NES or

CMA-ES and allow non-diagonal covariance for high dimensional problems.

3.1 Proposed Algorithms

Sampling

For sampling at each generation, we use a Gaussian distribution constructed by taking

a Gaussian distribution with n-dimensional covariance matrix and then stretching or

compressing the sample in a smaller number of dimensions s+r, where s is the number

of stretching vectors and r is the number of compressing vectors.

In practice, we first choose a random vector x from N (µ,σ) by generating random

variables {εi}1≤i≤n from a standard normal distribution N (0, I) and setting x = S(ε)

15

Adaptive Evolution Strategies Xuefeng Li

given by

xi = µi +

n∑
i=1

εiσix̂
i

where εi are treated as latent (or scale-free) parameters, and x̂i denotes the vector

whose ith component is 1 and all other components are 0.

Then we rescale the sample with the rescaling function R : ε 7→ z. It is determined by

an orthonormal basis {û(j)}1≤j≤r+s and a rescaling factor ρ(j) in each direction.

z = R(ε) = ε+
r+s∑
j=1

(ρ(j) − 1) <ε | û(j)> û(j)

Finally, sample points x are obtained from the latent variables z by

x = µ+ σ z

Update the Mean of the Distribution

The generated sample x is evaluated by the objective function f(x). Then we use the

fitness to update the parameters of the search distribution. Our algorithm is similar

with the plain search gradient descent, but with an implicit reparameterization of µ

and σ. If we were to apply gradient descent directly on µ the updates would take the

form

µi ← µi + αµ f̃(x)
(xi − µi)

σ2i
(3.1)

However, as pointed out in NES by Wierstra et al. (2014), this approach is numerically

unstable and generally leads to poor results — essentially because the magnitude of

the updates to µi scale inversely with the standard deviation σi in the corresponding

direction.

16

Xuefeng Li Adaptive Evolution Strategies

Instead, we adopt a simpler and arguably more natural approach of updating µ explic-

itly in the direction of (x− µ):

µi ← µi + αµf̃(x)(xi − µi) (3.2)

One way to view this is as an implicit rescaling of µ. If we denote by z
(µ)
i the number

of standard deviations between 0 and µ in the ith dimension (i.e. µi = σiz
(µ)
i) then it

is essentially the same as performing gradient descent with respect to z
(µ)
i rather than

µi (except that µi does not change when σi is updated, as it would if σi and z
(µ)
i were

treated as truly independent variables).

Update the Standard Deviation

Instead of updating σ with plain search gradient

σi ← σi + ασf(x)
(ε2i − 1)

σi
, (3.3)

we need to do explicit regularization to make the updates numerically stable. We

parameterize σ as:

σi = log(eκi + 1), (3.4)

then apply gradient descent to κi instead of σi to do the updates. Updates are computed

by the midpoint method to keep positive and negative σ updates balanced. When σ is

small, we have
dσi
dκi

= exp(κi − σi) ' σi

According to the chain rule, equation 3.6 is equivalent to:

κi ← κi + ακf(x)(ε2i − 1), (3.5)

In other words, like the µ updates, the magnitude of the σ updates in each dimension

will be roughly proportional to σi in that dimension. In addition, when σi is big, dσi
dκi

is approximately constant, thus preventing any exponential blow-up in the size of σi.

17

Adaptive Evolution Strategies Xuefeng Li

Update rescaling factor and orthonormal basis

The rescaling factors ρ(j) can be updated in the same manner as the σ We turn now to

the updating of the scaling vectors {û(j)}.

For convenience, we divide the vectors {û(j)}1≤j≤r+s into two groups {û(j)}1≤j≤r and

{v̂(k)}1≤k≤s. Our intention is the algorithm should try to identify certain directions

{û(j)} in which the distribution needs to be stretched, and other directions {v̂(k)} in

which the distribution needs to be compressed. In other words, {û(j)} should span a

subspace near which f(x) is high while {v̂(k)} spans an orthogonal subspace near which

f(x) is low. Every sample z from Nû,ρ can be uniquely decomposed as

z = z
‖
u + z

⊥
u

where z
‖
u lies in the subspace spanned by {û(j)}. Because

∫
z f(S0(z))Nû,ρ(z) dz = 0,

maximizing f near the subspace is equivalent to minimizing it away from the subspace.

With this in mind, we seek to adjust the vectors {û(j)} in such a way as to minimize∫
z
f(S0(z))||z

⊥
u || Nû,ρ(z) dz

Note that ||z
⊥
u || = ||z|| sin(θz,u) where θz,u is the angle between z

⊥
u and z

‖
u . Applying

gradient descent to this angle (with learning rate αu) we rotate the orthonormal frame

{û(j)} by an amount proportional to

αuf(S0(z))||z
‖
u || cos(θz,u) = αuf(S0(z))||z

‖
u ||

in the direction which most efficiently reduces ||z
⊥
u ||.

The update for {v̂(k)} is similar, except that, to keep {v̂(k)} orthogonal to {û(j)}, we

decompose (z − z
‖
u) as

z − z
‖
u = z

‖
v + z

⊥
v

We then adjust the angle between (z − z
‖
u) and z

‖
v so as to maximize∫

z
f(S0(x)) ||z

⊥
v || Nû,ρ(z)dz

18

Xuefeng Li Adaptive Evolution Strategies

Although this algorithm keeps the basis vectors orthonormal to first order, an explicit

Gram-Schmidt orthonormalization is required periodically (roughly, every 100 itera-

tions) at a cost of O
(
((r + s)2n

)
. Apart from this, the computational cost at each

iteration is O
(
(r + s)n

)
.

3.2 Techniques

In this section we will introduce several techniques we used to improve our algorithms’

performance and robustness. Fitness normalization is used to achieve an appropriate

scaling of the fitnesses. Variance regularization is used to avoid the over shrinking of

the search distribution which leads to insufficient exploration thus converging to local

minimums. Virtual batch normalization is used for having better exploration at the

early stages of training in some of our testing environments.

3.2.1 Fitness Normalization

To achieve an appropriate scaling of fitnesses f , as well as variance reduction, we make

use of running averages to maintain estimates Fmean and Fvar of the mean and variance

of f over our current distribution q(x), and scale the current fitness f(x) to

f̃(x) = (f(x)− Fmean)/
√
Fvar (3.6)

This is related to fitness shaping used in NES (Wierstra et al., 2014). However, our

method can achieve a more accurate measure of fitnesses while keep the algorithm

invariant to fitness transformation.

3.2.2 Variance Regularization

ES tends to shrink the distribution in some directions to have a higher expected fitness.

If the variance gets too small during the process, it will lead to poor explorations and

converging to local minimums. To avoid this, we initialize the standard deviation σ0

19

Adaptive Evolution Strategies Xuefeng Li

and set Nµ,σ0 as our ”prior” distribution. Then our aim is to find a distribution q(x)

for which
∫
x f(x) q(x)dx is as large as possible, but does not differ too greatly from the

“prior” distribution Nµ,σ0 with the same mean µ and initial standard deviation σ0 in

each direction. Then the function we seek to maximize becomes: We therefore we seek

to maximize ∫
x
f̃(x) q(x)dx+ λσDKL(q,Nµ,σ0), (3.7)

where DKL(q,Nµ,σ0) is the Külback-Leibler divergence between q = Nµ,σ and Nµ,σ0 .

We also apply it on the scaling factor ρ, then the equation becomes:∫
x
f̃(x) q(x)dx+ λσDKL(q,Nµ,σ0) + DKL(Nû,ρ,Nû,1) (3.8)

The last two terms can be seen as the regularizer for σ and ρ with Külback-Leibler

divergence, this is similar with weight decay but using different metric.

3.2.3 Virtual Batch Normalization

As pointed out by (Salimans et al., 2017), for some environments, Gaussian parameter

perturbations did not always lead to adequate exploration. For some environments,

the state is dominated by some elements which are not important like the background

colour. In this situation randomly perturbed parameters tends to encode policies that

always took one specific action. This can be solved by using virtual batch normalization

(Salimans et al., 2016).

Virtual batch normalization is similar with batch normalization (Ioffe and Szegedy,

2015) except that the normalization is based on the statistics collected on a reference

batch of examples that are chosen once and fixed at the start of training. Where the

mini-batch used for calculating normalizing statistics is chosen at the start of training

and is fixed. This makes the policy more sensitive to small changes in the input at

the early stages of training when the weights of the policy are random, ensuring that

different policies will have different fitnesses.

20

Xuefeng Li Adaptive Evolution Strategies

Chapter 4

Implementation

Our algorithm is highly parallelized thus need large amounts of computational re-

sources. We will introduce the support hardware we use from National Computational

Infrastructure (NCI). And explain our software architecture and parallelization plan.

4.1 Hardware

We use our local computing device for neural network architectures design and testing

while use supercomputers raijin from NCI for more computationally intensive problems.

4.1.1 NCI Raijin

Raijin is a hybrid Fujitsu Primergy and Lenovo NeXtScale high-performance, distributed-

memory cluster procured with funding from the Australian Government. It compro-

mises: 1) 84,656 cores (Intel Xeon Sandy Bridge 2.6 GHz, Broadwell 2.6 GHz) in 4416

compute nodes. 2) 120 NVIDIA Tesla K80 GPUs in 30 nodes and 8 NVIDIA Tesla

P100 GPUs in 2 nodes 3) 32 Intel Xeon Phi (64 core Knights Landing, 1.3 GHz) in 32

compute nodes. 4) 300 Terabytes of main memory. 5) 8 Petabytes of high-performance

21

Adaptive Evolution Strategies Xuefeng Li

operational storage capacity.

For our experiments, we use only CPUs in order to scale our algorithm. Depends on

the environments, we use 4/8/16 nodes, each node has 16 CPU cores, to do function

evaluation and parameters updating.

4.2 Software

4.2.1 Modules

OpenAI Gym is a toolkit providing benchmarks for comparing artificial intelligence

algorithms. It has a range of game environments including classic control problems,

Atari games and board games. It is compatible with any numerical computation li-

brary including TensorFlow. For this thesis, we use various environments including

Atari games like pong, control problems such as pendulum etc.

Tensorflow is an open source numerical computation software library using data flow

graphs. The nodes in the graph represents the math operation which the edge in the

graph represent the multi-dimensional tensor between nodes. TensorFlow can run on

multiple CPUs and GPUs and it is widely used for building and training neural net-

works. For this thesis, we use Tensorflow to build our neural network models and do

the inference.

Ctypes module is a built-in function module used by Python to call dynamic link

library functions. It can be used for mixed programming of Python and other lan-

guages. For this thesis, we use ctypes to do the communication between C and Python

by sharing library functions and global variables.

22

Xuefeng Li Adaptive Evolution Strategies

Figure 4.1: Software Architecture

Mpi4py is a Python library built on top of MPI. It allows Python’s data structure to

be easily passed in multiple processes. More specifically, Mpi4py is a powerful library

that implements many of the MPI standard’s interfaces, including peer-to-peer com-

munication, group-wide communication, inter-group communication, etc. In addition,

it also provides SWIG and F2PY interfaces that allow us to use our mpi4py objects and

interfaces for parallel processing after wrapping our own Fortran or C/C++ programs

into Python. These advantages make it the first choice for parallelizing the program

for this thesis.

4.2.2 Software Architecture

The implementation consists of three main parts, ES program, game framework and

neural network model. The ES program is written in C while the game framework and

neural network model are implemented in Python. We use ctypes to do the communi-

cation between the C program and the Python program.

The parameters and sample parameters are saved in shared memory using ctypes. At

each iteration, ES program generates new sample parameters in shared memory and

23

Adaptive Evolution Strategies Xuefeng Li

network model will be updated with the sample parameters. Then the game framework

will evaluate the new model and save the fitness value in shared memory and the fitness

will be used to do the update by ES program.

4.2.3 Parrallelization

Before describing our parrallelization method, we first illustrate some important con-

cepts about Parallel Computing:1)A Cluster is a group of loosely connected computers

that work together, so that they can be regarded as a single computer. Clusters are

composed of multiple nodes connected by a network. 2) A Node is a standalone ”com-

puter in a box” compromised of multiple CPUs/processors/cores, memory, network

interfaces, etc. They are networked together to comprise a supercomputer.3) Shared

Memory describes a computer architecture where all processors have direct access to

common physical memory. 4) Communications means the exchange of data in Par-

allel Computing. This can be accomplished through a shared memory bus or over a

network. 5) Embarrassingly Parallel means solving many similar, but independent

tasks simultaneously with little to no need for coordination between the tasks.5) Par-

allel Overhead is the amount of time required to coordinate parallel tasks, as opposed

to doing useful work.

We adopted a slightly different communication strategy used in OpenAI ES (Salimans

et al., 2017). We use a master-worker architecture: at each iteration, masters broad-

casts parameters to the workers, and the workers send returns to the master. The

communication is based on using shared random seeds and shared memories, which

drastically reduces parallel overhead.

In practice, we have n nodes and p processes per node, so k = n ∗ p processes in total

in the cluster. Each node has a master process which stores a sample for all workers

processes and creates a shared memory block for each node-local worker’s policy net-

work parameters. Each worker in a node has a global rank (MPI global comm rank),

24

Xuefeng Li Adaptive Evolution Strategies

global sample index, node param index (index into shared memory block for each lo-

cal worker). The pseudo random number generator (prng) has two seeding parameters:

seed, and sequence.

At each iteration, each node’s master creates a prng for each worker in the cluster using

the same initial seed, and use the sequence as the worker’s global sample index. After

the master generated new parameters for the worker, it sends a message to the worker.

And then the worker does a rollout and sends the fitness to the relay. The purpose of

the relay is to ensure all masters get the fitnesses in the same order.

By using hundreds to thousands of parallel CPU workers, our implementation can solve

Bipedal Walker/Lunar Lander/Half Cheetah in minutes and obtain competitive results

on Pong after hours of training time.

25

Adaptive Evolution Strategies Xuefeng Li

Chapter 5

Exerimental Results

To test the effectiveness of different parts of our algorithm, we test four variants of our

algorithm:

1. Non-adaptive covariance (Fixed sigma)

2. Adaptive diagonal covariance (Adaptive sigma)

3. Adaptive orthonormal basis and non-adaptive diagonal covariance (Adaptive frames)

4. Adaptive orthonormal basis and adaptive diagonal covariance (Adaptive frames

and sigma)

Figure 5.1: Distributions updated with: Algorithm 1 (Left), Alorithm 2 (Middle),
Algorithm 3 (Right), Algorithm 4 (Right)

26

Xuefeng Li Adaptive Evolution Strategies

(a) Pong (b) Half-cheetah (c) Bipedal Walker

Figure 5.2: Selected environments from OpenAI Gym

5.1 Experimental Setup and Hyperparameters

5.1.1 Envrionments

Mujoco. We use a benchmark of continuous robotic control problems in the OpenAI

Gym [Brockman et al., 2016] for analyzing our algorithms. We have tested on various

problems including cart-pole balancing, inverted pendulum, and more difficult ones like

half-cheetah. The environments were simulated by MuJoCo (Todorov et al., 2012) For

these environments, we use multilayer perceptrons with 2-3 10-unit hidden layers sepa-

rated by tanh nonlinearities. The architecture is smaller than the one used in OpenAI’s

work (Salimans et al., 2017), but we found our algorithms can still learn effectively and

have faster convergence speed.

Atari. We also ran our algorithms on some Atari games available in OpenAI Gym

(Todorov et al., 2012). We used the same preprocessing methods used by (Mnih et al.,

2016). The preprocessing processes include downsampling and converting the RGB

observations to gray scale.

Others. We use simple envrionments like cart-pole balance for testing and debugging.

And we also successfully trained on a variety of envrionments including Lunar-Lander,

Bipedal Walker, Acrobot and etc.

27

Adaptive Evolution Strategies Xuefeng Li

5.1.2 Hyperparameters

We use the Bipedal Walker from OpenAI Gym as a test environment for hyperparameter

tuning. We employ a multilayer perceptrons with 3 hidden layers and 10 nodes for

each layer, separated by tanh nonlinearities. The total number of weights is 320. We

terminate each run when the average over a set of 10 consecutive fitness evaluations

reaches a threshold of +100. We fix the momentum at 0.9 for µ, σ, ρ and u (where

applicable).

Algorithm 1: Fixed Sigma

We find it convenient to express σ0 as a multiple of 1/
√
n where n is the number of free

parameters. In this way, σ0 becomes a measure of the Euclidean distance between the

mean µ and a typical sample point x. We first fix the learning rate αµ to the generally

accepted value of 0.05 and test various values of σ0 between 1 and 10. The results

(shown in Fig. 5.3) indicate that σ0 ' 5 is the best of these values.

1 2 3 5 10

5k

10k

15k

20k

Figure 5.3: Distribution of stopping times for Algorithm 1 with αµ = 0.05 and varying
values of σ0 (horizontal axis). For each set of 25 runs, the bounding box specifies the
middle two quartiles, the horizontal line is the median, and the error bars indicate the
lowest and highest stopping time.

An alternative approach is to vary σ0 while keeping the product αµσ0 fixed (since this

measures the Euclidean distance of a typical µ-update). Fig. 5.4 shows the results of

this approach. We see that σ0 = 3, αµ = 0.083 now emerges as a superior choice.

28

Xuefeng Li Adaptive Evolution Strategies

1 2 3 5 8

5k

10k

15k

20k

Figure 5.4: Distribution of stopping times for Algorithm 1 with varying values of σ0
(horizontal axis) setting αµ = 0.25/σ0 in each case.

When σ0 is too low, the algorithm may fail due to insufficient variation in behavior

between different samples. When σ0 is too large, the fitness at sample point x may not

be representative of values between µ and x. Additionally, with the tanh activation

function, small weights in the early stages of neural network evolution may restrict the

network to essentially linear behavior, while large weights may saturate the activation

function leading to more discretized computation. There should be a “sweet spot” in

the middle where the weights are just large enough to produce the right amount of

nonlinearity.

Algorithm 2: Adaptive Sigma

Algorithm 2 aims to adjust the values of the individual σi’s based on the sequence of

observed fitness evaluations. Considering the number of parameters compared to the

number of observations, there will be a lot of noise in this signal, hence the need for

the regularizing parameter λσ.

Fig. 5.5 shows the results from testing various values of λσ ranging from 0.05 to 1.0 .

When λσ is large, each σi is constrained to remain very close to σ0, so the distribution

of stopping times becomes very similar to that observed in Fig. 5.3 with σ0 fixed at

5. When λσ becomes small, the σi’s are allowed to vary widely, with much of the

variance will surely be attributable to noise in the signal, so the performance of the

algorithm degrades. Theoretically, there should be an intermediate region in which

29

Adaptive Evolution Strategies Xuefeng Li

0.05 0.1 0.2 0.3 0.5 1.0

5k

10k

15k

20k

Figure 5.5: Distribution of stopping times for Algorithm 2 with αµ = 0.05, σ0 = 5,
ασ = 0.05 and varying values of λσ (horizontal axis).

0.1 0.2 0.3 ∞

5k

10k

Figure 5.6: Distribution of stopping times for Algorithm 3 with αµ = 0.05, σ0 = 5,
αρ = 0.1 and λρ = 0.1, 0.2, 0.3 (horizontal axis). For comparison, the result from
Algorithm 1 with fixed σ0 = 5 is labeled as “∞”.

the performance is improved. In the present instance, the training times do appear

to be slightly lower for values of λσ around 0.3, but the difference is not statistically

significant. This may indicate that, for this particular domain, the sensitivity is roughly

similar in magnitude for all parameters, in which case Algorithm 2 would not provide

a significant improvement over Algorithm 1.

Algorithm 3: Adaptive Frames

Algorithm 3 aims to rotate the frame vectors {û(j)}, {v̂(k)} while simultaneously ad-

justing the corresponding scaling factors {ρ(j)}. In general, αρ should be large enough

that adjustments to ρ(j) will keep up with those of u(j) as it rotates, but not so large as

to make the learning unstable. We choose αvec = 0.01 which means that, on average,

30

Xuefeng Li Adaptive Evolution Strategies

each fitness evaluation will cause the frame vectors to rotate by 0.01 radians (about

half a degree). We tested αρ = 0.05 and 0.1 and found that 0.1 generally gave better

results. Figure 5.6 shows the distribution in training times for λρ = 0.1, 0.2 and 0.3 .

The distribution from Algorithm 1 with the same (fixed) value for σ0 is included for

comparison. Algorithm 3 with λρ = 0.2 does seem to provide a slight advantage com-

pared to Algorithm 1, but a two-tailed Mann-Whitney U-test gives a p-value of 0.3

which is not statistically significant.

5.2 Results

We tested our algorithms on three additional domains – the MuJoCo Half Cheetah,

Inverted Pendulum and Inverted Double Pundulum. The results are shown in Figs. 5.7,

5.8 and 5.9.

For the Half Cheetah domain (Fig. 5.7), our training times seem quite fast compared to

what has previously been reported, but this may be due in part to our smaller network

size. The stopping times for Algorithm 2 do appear to be slightly lower than those for

Algorithm 1, but the (two-tailed) significance value for this comparison is 0.134 which

is not statistically significant.

Alg 1 Alg 2 Alg 3 Alg 4

5k

10k

Figure 5.7: Comparison of Algorithms 1, 2, 3 and 4 for the Half Cheetah domain, with
10 hidden nodes in each layer, σ0 = 2, ασ = 0.01, λσ = 0.3 and λrho = 0.1

For the Inverted Pendulum (Fig. 5.8), Algorithm 2 appears to train faster than Al-

gorithm 1, and a 2-tailed Mann Whitney U-test confirms this observation, with a

31

Adaptive Evolution Strategies Xuefeng Li

Alg 1 Alg 2 Alg 3 Alg 4

1k

2k

Figure 5.8: Comparison of Algorithms 1, 2, 3 and 4 for the Pendulum domain.

significance score of 0.00065 .

Alg 1 Alg 2 Alg 3 Alg 4

20k

40k

Figure 5.9: Comparison of Algorithms 1, 2, 3 and 4 for the Inverted Double Pendulum.

For the Double Inverted Pendulum (Fig. 5.9), Algorithm 2 clearly trains much faster

than Algorithm 1, Algorithm 3 also trains faster than Algorithm 1, with a significance

score of 0.025 .

32

Xuefeng Li Adaptive Evolution Strategies

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis focuses on the validation of a newly proposed efficient evolution strategies

algorithm to alleviate the internal computational complexity. Our main contributions

include:

1. We have analyzed the proposed algorithms and validate the algorithms’ perfor-

mances on a set of test problems. The experimental results show the proposed

algorithm with adaptive covariance outperformed non-adaptive covariance which

was used in OpenAI’s recent work on ES (Salimans et al., 2017).

2. We have conducted several experiments to validate the performance of the scaling

orthonormal basis, the proposed algorithm with the scaling orthonormal basis

outperforms the algorithm with diagonal covariance on some test problems, but

not others.

33

Adaptive Evolution Strategies Xuefeng Li

6.2 Future Work

Except what we introduce In this thesis, we have done and are willing to do many other

experiments. We would like to point out some research issues for future works.

1. Game of Go We have done some experiments on the Game of Go along with

this thesis. However, due to the complexity of the game and limited time we did

not achieve a superior result. By using a neural network only to do the move

selection, the trained agent is able to beat a random opponent stably while it is

still far from beating a human player. We are looking to research on learning the

game of go with ES in the future.

2. Co-evolution. Current experiments are all done in a fixed fitness environment

which means the environment will not change while the agents keep evolving.

This works fine in some environments. However, for two-player games like Go,

unless we have a pre-tuned expert level opponent, it is difficult for the agents to

learn with a fixed weak opponent. Thus, we need a method to let the opponent

can evolve with the agent. Co-evolution has previously been applied in a variety of

game-playing research and gained competitive result compared with only trained

with a fixed opponent. Hence, it would be interesting to combine ES with co-

evolution.

3. Scaling Orthonormal Basis. As shown in our experimental results, the variant

with scaling orthonormal basis did not achieve a statistically significant better

performance than simple ES. Explaining this performance involves knowing the

loss landscape of the neural network with different environments, this is still an

open question. We hope to do more research on that and improve the proposed

algorithm.

34

Xuefeng Li Adaptive Evolution Strategies

References

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation,
10(2):251–276.

Amari, S.-i. and Nagaoka, H. (2007). Methods of information geometry, volume 191.
American Mathematical Soc.

Berny, A. (2000). Selection and reinforcement learning for combinatorial optimization.
In International Conference on Parallel Problem Solving from Nature, pages 601–
610. Springer.

Berny, A. (2001). Statistical machine learning and combinatorial optimization. In
Theoretical aspects of evolutionary computing, pages 287–306. Springer.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). Openai gym.

Hansen, N., Ostermeier, A., and Gawelczyk, A. (1995). On the adaptation of arbi-
trary normal mutation distributions in evolution strategies: The generating set
adaptation. In ICGA, pages 57–64.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.
In International Conference on Machine Learning, pages 1928–1937.

Pollack, J. B. and Blair, A. D. (1998). Co-evolution in the successful learning of
backgammon strategy. Machine learning, 32(3):225–240.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach
prinzipien der biologischen evolution. frommann-holzbog, stuttgart, 1973. Google
Scholar.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.
(2016). Improved techniques for training gans. In Advances in Neural Information
Processing Systems, pages 2234–2242.

Salimans, T., Ho, J., Chen, X., and Sutskever, I. (2017). Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.

Schwefel, H.-P. (1993). Evolution and optimum seeking: the sixth generation. John
Wiley & Sons, Inc.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 5026–5033. IEEE.

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber, J.

35

Adaptive Evolution Strategies Xuefeng Li

(2014). Natural evolution strategies. Journal of Machine Learning Research,
15(1):949–980.

36

