
Australia 

 

School of Computer Science and Engineering 

The University of New South Wales 

   

Scalable 3D virtual reality visualization of biological data 

by 

Jianfu Li and Yu Yao 

  

 

Thesis submitted as a requirement for the degree of Bachelor of 
Engineering in Computer Engineering 

    

Submitted: 29, May 2018  

                                               Supervisor: Dr Joshua Ho 

                                           Assessor: Dr Eleni Giannoulatou 

Student ID: z3485848, z3458929  Topic ID:   3820 

 



1 

 

Abstract 

With the development of RNA sequencing, flow cytometry and mass cytometry technology, 

volume of single cell data is growing explosively. It becomes much more difficult for 

scientists to use existing tools to efficiently visualize the large volume of high dimensional 

data sets generated by these single-cell technologies. Under such circumstances, 

selecting an efficient method to enhance intuitive data understanding is becoming very 

important. An efficient data visualization method should enable users to easily interact with 

large data sets and understand the structure within them.  As a result, we built a low-cost 

and cross-platform virtual reality (VR) visualization application which provides a powerful 

means to explore large single-cell data sets. It allows data analysts to have an immersive 
view of the global structure of data sets, while interactively explore profiles of a single cell. 

  



2 

 

Contents 
 

Introduction 5	

Related application 7	

Single cell variables characterization technologies 7	

Bulk RNA-seq 7	

Single cell RNA-seq 7	

Flow cytometry 8	

Mass cytometry 8	

Screen-based 3D visualization 8	

Existing visualization tools 8	

ParaView 8	

VisIt 9	

Mayavi2 9	

NIA array analysis tool 9	

Gecko 10	

VR visualization 10	

VR technology 10	

VR equipment 10	

VR software development kit (SDK) 13	

WebVR 13	

Google VR 13	



3 

 

OpenVR 13	

Existing visualization tools 13	

MetNet3D 13	

SkinExplorer 14	

BRAINtrinsic 14	

IViz 14	

Microcopy data visualization tool 15	

CellexalVR 15	

Summary 15	

Related frameworks 17	

WebGL2.0 17	

Unity 17	

PlayCanvas 17	

Babylon.js 18	

Three.js 18	

A-FRAME.js 18	

Solution 20	

Software developments 21	

Input data 21	

Input format 21	

Content requirements 21	

Upload method 22	

Data pre-process 23	



4 

 

Data visualization 23	

3D geometry visualization 23	

High dimensional features visualization 24	

3D compass 25	

Interaction 26	

GUI 26	

Input method 28	

Keyboard and iCade remote controller 28	

Mouse and gaze-based interactions 30	

Voice control 30	

Evaluation 32	

Loading time test 32	

Rendering ability test 33	

Further work 36	

Movement animation generation 36	

Support point recluster 36	

Support VR gloves controller 36	

Conclusions 38	

Bibliography 39	

 

  



5 

 

Introduction 

Data visualization, as a key component in the process of mining data, establishes a link 

between the quantitative content of data and human intuition, thereby providing a scientific 

path from data to knowledge and understanding. It is also crucial in terms of 

bioinformatics. For example, in the process of analysing sequencing data, data 

visualization can be used to identify inconsistent cluster annotation, which will directly 

affect analysis result. However, data sets generated by single-cell RNA-seq (scRNA-seq) 

usually has both high dimension (~20,000 genes) and high volume (~100,000 single cells). 

Moreover, the volume is still increasing with the development of new single cell 

experimental protocols, with the possibility of profiling a million cells very soon. Although 

the dimension can be reduced by applying dimensionality reduction methods such as the 

principal components analysis (PCA), effectively displaying hundreds of thousands of data 
points on a two-dimensional plot is still challenging.  

A key task for single cell data analysis is clustering and visualization of all the single cells 

to identify cell subpopulations. A good visualization tool should enable clear visual 

separation of different clusters and allow exploration of their gene/protein expression 

profiles. Current single cell data visualization tools are mainly designed to visualize up to 

thousands of cells but are not designed to scale up to millions of cells. Moreover, high 
dimensional profiles of individual cell are invisible.  

Our application, starmap, introduces a scalable visual design that combines the benefit of 

a three-dimensional (3D) scatter plot for exploring clustering structure, and the benefit of 

star plots (also known as radar charts) for multivariate visualization of an individual cell. In 

addition, starmap provides a lot of interactions to drive into data sets with an intuitive 

graphical user interface (GUI). Moreover, starmap is designed to utilise low-cost VR 

headsets starting from 20 US dollars. We reason that an immersive visual experience will 
likely improve the navigation and exploration of hundreds of thousands of cells. 

In this thesis report, the literature review section will briefly explain cell variables’ 

characterization methods, VR technology and related frameworks. On top of that, this 

section will present some previous work of screen-based and immersive VR 3D data 

visualization tools. Meanwhile, reasons for choosing VR in addition to advantages and 

disadvantage of these tools will also be illustrated. The subsequent section will present our 
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solutions based on problems with existing tools, followed by the software development. To 

test the usability of our application, evaluation is divided in two different aspects including 

performance evaluation and user testing.  
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Related application 

Single cell variables characterization technologies 

Bulk RNA-seq 

Bulk RNA-seq (RNA sequencing) is one of the most widely used technologies in high-

throughput sequencing technology, with which the average expression level for each gene 

across a large population of input cells can be calculated (Vladimir, et al., 2017) RNA-seq 

can help bioinformaticians to understand the variations in the expression of all genes 

under different conditions. For instance, detecting the differences between normal and 

tumor tissues, differences in gene expression prior to and after drug treatment or 

differences in the gene expression of different tissues at different stages of their 

development. The basic steps include the preparation of a sequencing library and 

sequencing (Sho, et al., 2014). By applying this method, an n-dimensional data set 

(matrix) is obtained, with each dimension (a row of the matrix) representing a different 

gene, and each sample (a column in the matrix) representing the expression of a biological 

sample. The number of the dimension is in the order of tens of thousands (i.e., the total 

number of transcripts). There are usually hundreds of samples in a data set) and each 
sample consists of a pool of cells (usually millions of cells).  

Single cell RNA-seq 

Single cell RNA-seq (scRNA-seq), as a new technology, has been increasingly widely 

adopted since early 2010s. Comparing to bulk RNA-seq, it measures the distribution of 

expression levels for each gene in individual cells instead of the population average, 

providing a better insight for understanding changes in transcriptome-wide expression 

changes, and identifying subpopulations of cells, as well as the heterogeneity of cell 

responses (Fuchou, et al., 2009; Vladimir, et al., 2017). Each sample of a data set 

generated in an scRNA-seq experiment is a single cell. There could be up to a million cells 

in a scRNA-seq experiment.  
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Flow cytometry  

Flow cytometry is a high-throughput biophysical technology that can be used for cell 

counting and clustering. Physical and chemical properties of cells can be analysed by 

passing cells that rapidly flow in a fluid through electronic detection instruments. 

Nevertheless, there is spectral overlap between the emission spectrum of multiple 

fluorophores by using traditional fluorescence-based flow cytometry. Data compensation is 

used to address this problem, but with increasing number of parameters, compensation 

calculations become more complex. As a result, the number of parameters that can be 

quantified is limited. In recent years, 30-parameter flow cytometers have become 
commercially available. (Saeys, et al., 2016). 

Mass cytometry 

The mass spectrometry cytometric technique can quantify approximately 70-100 

parameters (Sean, et al., 2012) which is much greater than using flow cytometry. By 

employing time of flight (TOF) mass spectrometry, heavy metal-conjugated antibodies can 

be detected and quantified. With its help, the number of parameters collected 

simultaneously is greatly expanded and a high dimensional protein-abundance profile for 
each individual cell is obtained (Matthew & Garry, 2016). 

Screen-based 3D visualization  

Existing visualization tools 

ParaView 

ParaView is an open source, scientific data visualization tool for general purposes. The 

project was started in 2000. It is based on Visualization Toolkit (VTK) library and has the 

ability to render 3D graphs. It was first released on October 2002. Various clients are 

available for different platforms. Users are allowed to manipulate their visualized data such 

as slicing, contouring and rotation via GUI. Moreover, the python script can be generated 

for reproducible visualization. The advanced features of ParaView include tile display 

support, parallel rendering and distributed computing. These features can enhance its own 

ability to process massive data sets (Andy, et al., 2006). 
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VisIt 

VisIt is another distributed, parallel visualization and graphical analysis tool for 2D and 3D 

scientific data. It was also initiated in 2002 (Eric, et al., 2005). Both software architecture 

and functionality of VisIt and ParaView are extremely similar. Meanwhile, VisIt also support 
Java application programming interface (API). 

Mayavi2 

Mayavi2 is also a tool based on open source used for 2D and 3D visualization in many 

general circumstances. Implemented in Python and supporting various types of data such 

as scalar, vector and tensor data, it provides 2 ways of manipulating visualized data sets, 

python scripting or via its intuitive GUI. It offers higher flexibility for users with different 

preferences. Moreover, it provides more convenience for interactive work compared to 

ParaView and VisIt due to the integration of Ipython. However, ParaView and VisIt have 

better performance than Mayavi2 because Mayavi2 only supports serial processing 

(Ramachandran & Gaël, 2011). Instead of focusing merely on particular fields, designers 

of those tools want to create applications that can provide users with general solutions to 

many similar problems in various fields of academic research, which is their primary 

motivation. Without doubt, of course, there are edge cases for each research field that 

cannot be solved by general solutions. In those cases, the importance of designing tools 

for some specific purposes should not be ignored.  

NIA array analysis tool 

In 2005, the United States Institute of Health developed a tool for both data processing 

and visualizing microarray data. This half web-based data analysis tool allows microarray 

data to be uploaded in required formats in which it can assess the statistical significance of 

different gene expressions. It provides many helpful functions for the analyzation of 

microarray data via mathematical means which include true-error variance estimation with 

different error models, hierarchical clustering and principal component analysis etc. In 

addition, it is able to plot basic static 2D PCA graphs with their web-based visualization 

tool. In order to generate interactive 3D PCA graphs which allow rotation and 
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displacement, users must download additional VRML viewer like freeWRL and then import 
the files that was exported by NIA Analysis tool (Alexei A., et al., 2005). 

Gecko 

Gecko, another software for analysis of gene expression, also has a strong computational 

engine with 50 different analysis methods including clustering methods and PCA. It is an 

analysis system based on a client-server architecture as well. A client application for 

analyzing, containing the embedded browser which is only compatible to windows, is 

required to be downloaded for this application. Users are allowed to upload data files and 

send requests for applying different analysis methods to the server via the client. Gecko 

integrates the Spotfire visualization platform to render 3D data (Joachim, et al., 2004). 

Undeniably, both Gecko and NIA provide many methods for data procession. However, it 

is hard to customize their virtualization system to be identical to their specific data types by 

only integrating a third-party virtualization engine designed for end users. Consequently, 

the volume of information that can be observed and abstracted by virtualization of 
processed data is limited. 

VR visualization 

VR technology 

VR, also known as virtual environment, is the use of computer simulation to produce a 

three-dimensional virtual world space, which makes users feel more immersed by 

providing sensory stimulation. Despite some drawbacks, visual simulation is the most 

widely used method that can achieve this goal. Users are able to explore the artificial world 

by using various VR devices. In recent years, VR devices such as VR-BOX, Google 

Cardboard, HTC Vive etc. have become more affordable, lightweight and flexible, making 
the technology more applicable in many aspects including data visualization.  

VR equipment 

There are 3 main types of VR devices, prices of which are significantly different from one 

type to another. Most expensive type of devices are usually equipped with large screens 

(cave, cave2) (Figure 1). Key customers for this kind of devices are usually universities or 

research institutes. As the equipment prices always exceed the limited budgets of ordinary 
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customers and are too cumbersome for ordinary users. Another type of VR devices is a 

kind of headset that are much cheaper and more flexible. They are connected to PCs via 

cables, along with a headset with a built-in screen that are situated very close to the users’ 

eyes when the users put on the headsets (Figure 2). Prices of those headsets range 

between 200 US dollars and over 1000 US dollars. VR headsets for mobiles is the third 

type (Figure 3). This type of equipment usually costs around 20 US dollars. Mobile devices 

are being used to replace the built-in screen of VR headset for PC. It is the most portable 

solution for the experience of VR. Moreover, with the increasing performance of mobile 
devices, it has become the most cost-efficient choice for ordinary customers. 

 

Fig.1 Cave2 VR equipment. https://www.monash.edu/miv 
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Fig.2 VR headset for PC. https://www.vive.com/us/product/vive-virtual-reality-system/ 

 

Fig.3 VR headset for mobile. https://www.buyvrguide.com/vr-headsets/vr-box-2-0/ 
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VR software development kit (SDK) 

WebVR 

WebVR is a necessary JavaScript API for implementing an immersive VR web-based 

application. The first public version of it was released in 2016 and till now, it is still in 

experimental stage. Due to this reason, it is not supported by common web browsers. Its 

development team, therefore, has built a WebVR-polyfill to overcome the problem, making 

it possible for this tool to support most of web browsers and conduct the strong scalable 
ability for both low-end or high-end VR devices. (WebVR, 2017) 

Google VR 

Google VR SDK is used for providing support to their own VR devices. Developers are 

able to create the standalone mobile VR applications for both Android and IOS via google 

VR API. It also offers plugins for Unity and Unreal game development platforms 

respectively. With it, developers are able to create applications for google VR devices on 
these platforms. (Google, 2016) 

OpenVR 

OpenVR is another VR SDK developed by Valve. OpenVR is designed for supporting 

different VR headset devices among different brands instead of relying on a specific 

hardware vendor's SDK like Google VR. It is an open source library that is mainly 

implemented by C++. It is primarily used to develop standalone VR applications both for 

PCs and mobile devices. (Valve, 2015) 

Existing visualization tools 

MetNet3D 

MetNet3D is a great metabolic network visualization tool developed by Iowa State 

University in 2005. The invention of the tool is very challenging since the VR technology 

was still at its early stages during 2005. It allows users to interact with the stereoscopic 

view of gene expression data on a flat screen or immersive VR environment. The 

equipment they used for VR is composed of six large screen setups on the wall based on 

the CAVE system. The users can navigate through the network and choose a specific 
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node or edges to display the detailed information by using a six degree-of-freedom head 
tracker and a remote controller (Yuting, et al., 2005). 

SkinExplorer 

In 2013, a skin exploration VR system was implemented. The system supports both large-

screen 3D TV and desktop screen. For the VR mode on large-screen 3D TV, A ART 

SmartTrack is used to track the user’s head movement and user can use an ART Flystick3 

controller to interact with the GUI. For flat screen mode of the desktop, head movement is 

tracked by Kinect and a Joystick takes the place of Flystick3. Furthermore, users can enter 

data with either built-in auto-oriented 3D widgets on screen or virtual keyboards of remote 

devices linked to the system via TCP/IP sockets. In such cases, interactions including the 

modification of 2D transfer functions can be conducted more easily (Marie-Danielle, et al., 

2013). 

BRAINtrinsic 

BRAINtrinsic is a web-based VR visualization tool developed in 2015 for visualizing 

connectome data. In order to comprehensively discover the brain’s intrinsic geometry, 

users are able to choose different topological spaces where the connectome is embedded. 

In addition, it allows users to focus on interested brain areas by hiding other brain areas 

(Conte, et al., 2015). BRAINtrinsic derives a solution of using lightweight VR device 

(Oculus rift) to render the data when compared to MetNet3D and SkinExplorer. However, it 

is not completely compatible with VR. In VR mode, users are only able to interact with 

scene via mouse. Moreover, the users are only able to change settings in flat screen 
mode. After testing, the performance of BRAINtrinsic is lower than expected. 

IViz 

IViz is an immersive and collaborative data visualization VR system implemented by the 

Unity 3D platform. Oculus Rift is needed to experience VR. Leap Motion, 3D mouse or 

Kinect is used to interact with the scene. Iviz can render up to approximately 1,000,000 

data points. The user can select a particular point to show its information on the screen 

and add comments to the point. In addition, points clustering and outliers searching are 

also supported. Another useful feature of IViz is the collaborative visual data exploration 

which allows users to share their views with other users. (Donalek, et al., 2014). 
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Microcopy data visualization tool 

In 2017, a microcopy data visualization system was implemented by BMC Bioinformatics 

using Unity game engine. This system supports two interaction methods. The first method 

is interacting with the GUI with hands by tracking users' hands movement with Leap 

Motion. Another method is that users can use a gamepad and an Oculus Rift VR-headset 

with head tracking function (gaze). By using the VR-headset, users are able to control the 

cursor rendered in the centre of the screen through head movement. Cursor can also be 

leveraged to select the elements in the scene and confirm the selection using gamepad. In 

addition, the system also provides region selection tools in selection mode. Users can 

obtain a 2-dimensional Boolean array with z-position after selecting their interested region 
(Theart, et al., 2017). 

CellexalVR 

CellexalVR (Oscar, et al., 2018) is a standalone VR single-cell gene expression data 

visualization tool. Implemented by Unity, it contains many features and interactions which 

aid bioinformaticians in analysing data. For example, it provides multiple multidimensional 

scaling (MDS) plots in a VR scene to allow users to easily compare the differences 

generated by different dimensional reduction algorithms. Heatmaps for genes expression 

of defined groups can also be generated. The HTC Vive controller is used to grab and 

select both the data and the GUI. To make it easier for users to input data into CellexalVR, 

scripts are provided to convert data from an R session into the required input format. Key 

shortcomings of CellexalVR include that it is not supported on mobile devices, requires 

expensive equipment (e.g. a HTC Vive, and a performant desktop), and has a limited 

capability to provide stable rendering of points over 15000 points. 

Summary 

Compared to flat screen 3D data visualization tools, VR data visualization tools has 

stronger ability to immerse scientists in their datasets. VR not only provides 360 degrees 

of view, but also provides more natural interaction (gaze, hand tracking etc.) for data 

exploration compared to 3D data visualization. Above all, there are several researches 
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indicate that it is more effective in terms of abstracting useful information from data sets 
and error reduction (Nelson, et al., 1999; Laha & Doug A., 2012). 

Except Gecko and BRAINtrinsic, standalone packages need to be downloaded. The 

significant problem of standalone applications however, are their low capability of multi-

platform support. Developers have to implement their applications for various operation 

systems and devices. None of above are both compatible for mobile devices and 

desktops. Although Gecko and BRAINtrinsic are web-based applications, they do not 
provide solutions for efficient data visualization as mentioned previously. 

One of the biggest issues of VR data visualization tools is not cost effective. Especially 

MetNet3D and SkinExplorer, they are hardly affordable by ordinary users. Even the 

cheapest VR devices used by above applications are over 200 US dollars whereas the 

cheapest commercial VR devices are less than 20 US dollars. In addition, their 

applications are not easy-access because none of them fully support the VR experience 

with mobile devices.  

For all applications discussed above, none of them can visualize high dimensional features 

of data sets intuitively. However, in some circumstance, these features are also important 
for data analyzation.  

Despite repeated research, attempts to find an efficient single cell data visualization tools 
have failed to yell any positive results. 
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Related frameworks 

WebGL2.0 

WebGL2.0 is a highly used, low level JavaScript library for rendering 2D and 3D graphics 

in web application. WebGL2.0 can be considered as the JavaScript version of OpenGL ES 

3.0, which is used to create standalone application. No plugin is required to be installed for 

compatible browsers, since it has already become one of the web standards for browsers 

with hardware acceleration which can enhance the performance of rendering (WebGL, 
2017). 

Unity  

Unity is a high level, cross-platform 3D graphics engine primarily used to develop 

standalone games of Windows, MacOs, Linux or mobile game based on iOS and Android. 

It also can be applied to develop VR application with various VR plugins such as Google 

VR and Open VR downloaded. Integrated Development Environment (IDE) of Unity 

provides a powerful GUI which makes it easier for beginners without much programming 

background to interactively edit their applications. A code editor is also integrated by the 

IDE. Additionally, Unity provides many valuable features including gamepad support and 

smart Physic Engine. Recent years, the project developed in Unity also can be exported to 

WebGL application by cross-compiling C++ code into JavaScript. However redundant 

code will be generated in this process which can influence the rendering performance. 

Besides, it is hard to add extra JavaScript code if there are some features that have to be 

implemented in a lower level. Moreover, Unity claimed that WebVR supporting are still in 
progress with time needed for its development being uncertain (Unity, 2017). 

PlayCanvas 

PlayCanvas is a high-level 3D graphic engine based on WebGL and it is very popular 

among web-based game developers. It provides one-stop services for creating interactive 

web contents. An advanced online editor has been offered to users to build their 

applications efficiently. It can be used for projects’ visual building and real time 

collaborative development to enhance production rates. Users are also allowed to use it as 
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a project assertion management tool. Furthermore, the application created by PlayCanvas 
can be deployed in one click (PlayCanvas, 2017). 

Babylon.js 

Babylon.js has been developed by Microsoft and was launched in 2013. Being a 

newcomer, its target focuses more on web-based game development compared to its 

competitors. One of the key features of Babylon.js framework is to provide many built-in 

game modules including physics system, fire, road and cloud which makes the 

development of games much easier. The community of Babylon.js is still relatively small, 

but it has been growing quickly in recent years (Microsoft, 2017). 

Three.js 

Compared to PlayCanvas and Babylon.js, Three.js is a lower level 3d graphics framework 

that focuses on creating GPU enhanced 3D graphics for general purpose. The main 

disadvantage of lower-level framework is that developers have to take care of each part of 

the code. Thus, total development time will be longer than those of PlayCanvas and 

Babylon.js. On the other hand, one of benefits of Three.js is its higher degree of 

customization. It gives developers better control of their codes and more sufficient access 

to functions of WebGL level. It is not the most productive, but it is the safest library for 

consideration with performance compared to others. Furthermore, Three.js has excellent 

documentations attached to a lot of samples and online community of Three.js is much 
more mature than those of other WebGL based libraries (Threejs, 2017). 

A-FRAME.js 

A-Frame is a high-level web framework built on top of Three.js. In order to maintain the 

customizability, it provides full access to three.js as well. A-Frame allows users to render 

3D graphics by coding in HTML format, which is an efficient and productive feature for 

rendering static objects. An entity component system implemented by A-Frame is also an 

advanced feature for code structure optimization and unit testing. By using it, the code can 

be wrapped into components based on functionalities. Moreover, the component system is 

designed to be an ecosystem of A-Frame. There are a lot of useful custom open source 

components published on GitHub, for instance, line, points and mouse-cursor component. 
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Besides, A-Frame has integrated a lot of useful libraries such as remote controller support 
and WebVR-polyfill (A-FRAME, 2017). 
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Solution      

In this project, we aim to build an immersive, cross-platform and low-cost high dimensional 

biological data visualization tool. We will develop a web-based application using 
JavaScript and VR technology. 

One of main objectives of this system is to allow wider populations to have access and to 

enjoy the VR service. With this respect, the application is designed to be compatible with 

mobile phone VR devices, both for IOS and Android, which are cheaper compared to PC 

VR devices, but are still able to provide satisfactory VR experience. At the same time, in 

order to increase the universality, the application will also both support flat screen display 

of desktop and some expensive VR devices. In addition, Users are allowed to navigate 

their data to get better observation via different input techniques such as mouse, 
keyboard, gaze, voice and different remote hand controller. 

Another main objective is to explore gene/protein expression profiles of single cells. 

Intuitive visualization of high dimensional features requires a new visual design. We 

achieve this goal, we develop a new visual representation that combines a three-

dimensional scatter plot with radar charts for visualization of a very large number of 

multivariate data points. A radar chart is a graphical method for displaying multivariate 

data by providing an axis for each variable, and these axes are arranged radially around 

the centre point of a 2-dimensional chart with equal spacing. Features can be compared 

along their own axis for an individual, moreover overall differences among each individual 

point can be obtained by observing shape of the polygons. When a user selects a specific 

point, that point and its nearest points will be turned into radar charts showing the gene 
expression values of these cells. 

In order to provide a smooth and stable website for visualizing large data sets, GPU 
hardware acceleration is applied to enhance the performance. 
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Software developments 

We built a new smartphone-enabled VR application called Starmap, that enables 

immersive visualization of single-cell data for hundreds of thousands of cells using a 

mobile-enabled web browser and low-cost VR head mount device. Users can choose to 

view the application in a virtual environment (VR mode) using most modern VR devices, 

including VR-Box, Google CardBoard, VIULUX and VIVE, or on a flat screen via a PC (flat 

screen mode). The following subsections describe the detailed implementations of each 
component. 

Input data 

To view their data, users upload their local files stored on a PC or remote files stored in a 

cloud server onto our application. We use FileReader, a Web API, to read the input files. 

We focus on visualization of single-cell RNA-seq, flow cytometry and mass cytometry data 
after dimensionality reduction. 

Input format 

The accepted data input file format is a Comma-Separated Values (CSV) format, and a 

ZIP compression of the CSV format. Since the file translation of file sizes larger than 30MB 

(approximate 8 attributes for each point and 50K points totally) is time-consuming (i.e. from 

Cloud server to application), the user can upload a ZIP format file that contains only one 

input file. To decompress ZIP files, JSZip.js has been employed. Additionally, two demos 
both with a different sample size and data type are available at the landing page. 

Content requirements  

There are some content requirements for the input data. The first row of data must indicate 

a maximum of fifteen data attribute labels, containing at least the ‘x’, ‘y’, ‘z’ coordinates of 

3D points and a ‘cluster’ attribute. Custom label names for high dimensional features can 

also be included into the first row. The value of features for each point should be a numeric 
value. A value of ‘-1’ in the cluster column indicates outliers (Figure 4). 
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Fig.4 An example of input file content. 

Upload method 

For PC, Android, or iOS 11+ devices, users can either use a local file system or cloud 

storage (e.g. iCloud, Google Drive, OneDrive, etc.) to upload input data. For earlier 

versions of iOS devices, cloud storage is the only uploading method since the web 

browsers cannot access local files directly (Figure 5). 

 

Fig.5 Upload input data via cloud storage. 
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Data pre-process 

After an input data file has been uploaded, data pre-processing is crucial for getting better 

visualization effects. This involves rearranging a range of 3D coordinates and high 

dimensional features and using an initial camera (eyes) position to give a global view of 

the input data. Instead of using native looping to do calculations, we use matrix operations 

provided by numJs.js, which offers faster pre-processing speed especially on data with a 

large volume. 

Data visualization 

3D geometry visualization 

We use A-Frame.js, cooperating with Three.js, for data visualization. After the rendering 

starts, a scene with a perspective camera is created in order to provide a smooth and 

stable visualization of large data sets, we use billboards, 2D planes that can automatically 

rotate their front face towards the camera, to represent 3-dimensional structures of the 

input data. In addition, THREE.buffergeometry is used as a computationally efficient 
method to reduce the cost of passing data (vertex positions, colour, etc.) to the GPU.   

Every inlier point has a ball-shaped texture and size attenuated according to its distance to 

the camera. An outlier point represented by coloured dot is much smaller than an inlier 
point. (Figure 6). Semi-transparent bounding spheres for clusters are also rendered.  
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Fig.6 Global view of flow cytometry data contains outliers. 

High dimensional features visualization 

When an Inlier point has been selected, a radar chart implemented by a combination of 2D 

planes and lines will be covered on the point. Each spoke corresponds to a feature of the 

point. The data length of a spoke is proportional to the magnitude of the variable for the 

data point, relative to the maximum magnitude of the variable across all data points. A line 
is drawn connecting the data values for each spoke (Figure 7). 
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Fig.7 High dimensional features in flat screen mode. 

3D compass 

To prevent losses in large datasets while immersing into data for exploring detailed 

information, we implemented a 3D compass to indicate the orientation of the x, y, and z 

axes. (Figure 8). The x, y, z axes shown in red, green, and blue respectively, indicate the 

local coordinate system of data sets. A yellow arrow always points towards the camera’s 

look at direction. The compass is updated automatically with any changes in the viewing 
angle. 
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Fig.8 3D compass. 

Interaction 

Starmap provides a lot of interactions for manipulating with the scene. The camera can be 

moved to the left, right, forwards, or backwards, along the x and z axis of its own 

coordinate system. By changing the camera’s position in the scene, users are able to drive 

into their input data to observe its detailed inner structure. The viewing perspective can 

also be changed by updating either the 3D rotation of the camera or data. In order to get a 

suitable points' density, Starmap allows users to scale the distance between points. When 

an inlier point is selected, high dimensional features are displayed on itself and its 
surrounding points. 

GUI 

To enhance user experience (UX) and enable more interactions with observing data, we 

set up a GUI (Figure 9) for both the VR and flat screen mode, based on modification of 

Dat.GUI.js and Dat.GUIVR.js. Bounding spheres of all clusters will be displayed if “Display 



27 

 

All Bounding Sphere” option is selected (Figure 10). If users are only interested in some 

clusters, we added options to select specific display clusters. In addition, the font colour of 

a ‘Display Cluster’ label indicates the colour of the corresponding point of the cluster in the 

application scene. A list called ‘Feature Map’ maps the axes label of a radar chart with the 

corresponding high dimensional features name. Moreover, users can reset the camera 

position by selecting the ‘Reset Camera’ button. A “Help” function is also available in the 
GUI to remind users of starmap’s control instructions.  

Fig.9 GUI in VR (left), GUI in flat screen (right). 
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Fig.10 Display bounding spheres for all clusters. 

Input method 

By using JavaScript’s “addeventlistener” method, Starmap can monitor signals sent by 
various different input technologies to interact with the scene or GUI. 

Keyboard and iCade remote controller 

The keyboard (Figure 11) is used to scale, rotate data, and move the camera when using 

the flat screen mode. When the “keydown” event of JavaScript is detected, a bound 

command will be executed once. The iCade Remote Controller (Figure 12) substitutes the 

keyboard when in VR mode. These controllers are usually sold as a package with VR 

headsets for approximately 20 US dollars. The implementation logic of iCade controller is 

different from a keyboard because of different technical standards. When a button is 

pressed (down and up), a pair of sequential “keydown” events are emitted. Between this 

pair of “keydown” event, bound commands are executed continuously. 
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Fig.11 Keyboard Mappings 

 

Fig.12 Remote controller Mappings 
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Mouse and gaze-based interactions 

In the flat screen mode, the mouse is used to interact with the GUI- specifically to select 

points and control movement direction. The position of the mouse is detected by calling 
JavaScript’s “mouse event” event method.  

In VR mode, gaze is a substitution of the mouse control in VR mode (Figure 13) and uses 

a cursor which is fixed on centre of the screen. Users can control the cursor by changing 

the view angle with their head movements. The advantage of gaze interaction is that it is 

naturally supported by all VR devices. However, complex interactions may require 

excessive head movements from users. The “Raycaster” class of Three.js is used for 
detecting points of intersection for both the mouse and cursor. 

Fig.13 Gaze to select a point in VR mode 

Voice control 

By using both voice and gaze-based control, Starmap can be used without any extra input 

devices. Voice control, which is based on Annyang.js, is added in VR mode for all devices 

that support web speech APIs, and contains all functions of the remote controllers. 
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Corresponding functions are triggered when a correct voice command is recognized by 

Starmap. To increase the accuracy, each voice command consists of a single word (Figure 

14). 

 

Fig.14 Voice command instruction 
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Evaluation 

The evaluation focuses on the performance tests of local data loading time and rendering 

ability tests among popular mobile devices and desktop devices. Input data with different 

volumes (from 200 thousand to 1.5 million points) were generated using a Python CSV 
writer. All tests were run in Chrome. 

Loading time test 

The loading time for local files were calculated by the time difference between uploading 

start and rendering success. Since number of points in real data can be greater than 200 

thousand, it was important to evaluate the loading speed of Starmap for different data 
sizes. 

Fig.15 Loading time of different sizes of data on mobile devices 
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Fig.16 Loading time of different sizes of data on desktop devices 

Figure 15 shows that later mobile devices are able to load large volume of data in a short 

time, especially the iPhone X and iPhone 7. Both were able to complete the task within 2 

seconds despite the data file containing 800 thousand points. Similar to figure 15, figure 16 

shows that the later desktop devices use less time to load. Moreover, all desktop devices 

were able to load 1.5 million points within 6 seconds. 

Rendering ability test 

A-Frame.js’ stats component was used to test the rendering ability to monitor frames per 

second (FPS). The aim was to evaluate whether devices are able to obtain a stable 
visualization at 30 FPS (a comfortable FPS for human eyes) for different volumes of data. 
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Fig.17 The amount of points which can be rendered on mobile devices with FPS ≥ 30 

Fig.18 The amount of points which can be rendered on desktop devices with FPS ≥ 30 
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Figure 17 and figure 18 show that the rendering ability is highly dependent on the 

performance of the GPU because Starmap makes use of the GPU acceleration. Thus, the 

results show that desktop devices usually have better rendering power than mobile 

devices, with later devices having better rendering power in comparison to earlier devices. 

All the desktop devices could reach at least 800,000 points with 30 FPS, and 400,000 

points for mobile devices. In addition, most of the later desktop devices were able to reach 

a stable rendering of over 1.5 million points, while later mobile devices could reach 800 

thousand points.   
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Further work 

Movement animation generation 

We will implement an algorithm that can automatically find a camera movement path to 

nicely describe the input data. The key spots (i.e. a position for observing global structure 

of data) and meaningful paths (i.e. decision boundaries between clusters) should be 

included in the generated movement path. In addition, collisions between the camera and 
points should be avoided. 

Support point recluster  

There are a lot of clustering methods, and the results produced by them may significantly 

different. Starmap currently does not have the ability to swap clusters of points between 

these results. Thus, a function will be implemented to recluster points based on the 
selection of different cluster results contained in input data via the GUI. 

Support VR gloves controller 

To make interactions in VR more intuitive and natural, VR gloves (Figure 19) will be 

integrated into Starmap for tracking hands movement in real time. Users will be able to 

display profiles of a cell and interact with the GUI by touching, and potentially set the 
visibility of an area by circling with their fingers. 
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Fig.19 VR gloves https://manus-vr.com/#product-anchor  
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Conclusions 

In order to visualize multivariate single cell data with large volume to help biologists 

efficiently explore important information, a feasible solution was carried out after 

summarizing advantages and problems based on current methods and investigations on 

available technologies and development weapons. Starmap, a single cell data visualization 

tool, was also implemented, providing not only efficient multivariate data visualization, but 

also enabling a widespread adoption of VR data visualization by supporting low-cost VR 
devices.  
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